Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von der Stammzelle zur Nervenzelle in wenigen Wochen

21.01.2015

Max-Planck-Forscher beobachten Stammzellen im lebenden Gehirn

Auf Stammzellen ruhen die Hoffnungen vieler Mediziner. Sie könnten beispielsweise abgestorbene Nervenzellen nach einem Schlaganfall ersetzen. Bislang war es jedoch nicht möglich, Stammzellen live dabei zu beobachten, wie sie sich zu voll funktionsfähigen Nervenzellen entwickeln.


Aus Stammzellen werden Nervenzellen: Im Verlauf von drei Wochen wandeln sich immer mehr Stammzellen in noch unreife Nervenzellen um (grün).

© Biomaterials, 2015


Genregulatoren zeigen Entwicklungsstand der Zellen an: Der DCX-Promotor wird schon in unreifen Nervenzellen aktiv, SYN erst in reifen Neuronen, die Synapsen mit anderen Zellen bilden.

© Biomaterials, 2015

Jetzt haben Forscher am Max-Planck-Institut für Stoffwechselforschung in Köln ein neuartiges Verfahren entwickelt, einen solchen Vorgang im lebenden Gehirn zu beobachten. Sie können damit verfolgen, wie sich menschliche Stammzellen nach der Transplantation in die Hirnrinde von Mäusen zu reifen Nervenzellen entwickeln und funktionstüchtig werden.

Der medizinische Einsatz von Stammzellen hat in den letzten Jahren große Fortschritte gemacht, doch wichtige Fragen sind noch unbeantwortet: Wo müssen Stammzellen implantiert werden, damit sie möglichst gut überleben? Welche Bedingungen brauchen sie, um sich zu Nervenzellen zu entwickeln und den Heilungsprozess optimal zu fördern? Bislang können Wissenschaftler das Überleben und die Entwicklung solcher Stammzellen nicht im lebenden Tier, sondern nur an Gewebeschnitten unter dem Mikroskop beurteilen. So waren nur einzelne Momentaufnahmen in der sich über Monate hinziehenden Umwandlung von einer Stamm- zur Nervenzelle möglich.

Mit dem neuen Verfahren lässt sich nun der gesamte Prozess im lebenden Gehirn beobachten. Die Wissenschaftler versprechen sich davon neue Erkenntnisse beispielsweise für die Entwicklung besserer Schlaganfalltherapien. Die Forschungsgruppe um Mathias Hoehn am Kölner Max-Planck-Institut für Stoffwechselforschung hat menschliche Stammzellen so verändert, dass sie nur in bestimmten Phasen ihrer Entwicklung sichtbar werden.

Dazu haben sie Gene für drei optische Marker in das Erbgut der Stammzellen eingefügt: das Protein Ferritin, das als Kontrastmittel für die Magnetresonanztomografie (MRT) dient; das Enzym Luciferase, das die Stammzellen im Gehirn zum Leuchten anregt, und das fluoreszierende Protein GFP. Luciferase erzeugt ein so starkes Leuchten im lebenden Hirn, das es mit empfindlichen Kameras selbst durch dickere Gewebeschichten aufgenommen werden kann. GFP wiederum macht die Zellen für nachträgliche Untersuchungen unter dem Mikroskop sichtbar.

Verschiedene Genregulatoren stellen sicher, dass die Gene zu unterschiedlichen Phasen aktiv werden. Die Stammzellen zeigen also mit Licht ihren Entwicklungszustand an. Mit einer hochempfindlichen Kamera können die Forscher so die Entwicklung der Stammzellen bis hin zur ausgewachsenen Nervenzelle verfolgen. Gleichzeitig können sie die Zellen mit Hilfe des selbst produzierten Kontrastmittels Ferritin im Magnetresonanztomografen identifizieren und beispielsweise ihre Wanderung zum Ort eines Schlaganfalls beobachten.

Die Wissenschaftler haben auf diese Weise herausgefunden, dass sich die Stammzellen schon vier Tage nach der Implantation ins Gehirn von Mäusen zu unreifen Nervenzellen entwickeln. „Vier Wochen lang wandeln sich immer mehr Stammzellen in solche Nervenzellen um. Nach drei Monaten bilden sich dann reife Nervenzellen im Gehirn“, sagt Annette Tennstaedt vom Kölner Max-Planck-Institut. Die Zellen können schon elektrisch aktiv sein und sind damit funktionstüchtig, wie Forscher um Peter Kloppenburg von der Universität zu Köln nachgewiesen haben.

Mit der Methode der Kölner Forscher können Wissenschaftler künftig das Schicksal von transplantierten Stammzellen noch genauer untersuchen. So lässt sich zum Beispiel im Mäusegehirn untersuchen, wie Stammzellen nach einem Schlaganfall von ihrem Entstehungsort zum geschädigten Gewebe wandern und dort abgestorbene Zellen ersetzen. Die neue Methode lässt sich auch Nervenzellen mit ganz speziellen Funktionen übertragen, wie zum Beispiel den Ersatz von dopaminergen Nervenzellen bei der Parkinsons Erkrankung. Außerdem lässt sich damit die Anzahl der Versuchstiere deutlich reduzieren, denn dasselbe Tier kann immer wieder zu verschiedenen Zeitpunkten untersucht werden.


Ansprechpartner

Prof. Dr. Mathias Hoehn
Max-Planck-Institut für Stoffwechselforschung, Köln
Telefon: +49 221 4726-315

E-Mail: mathias@sf.mpg.de


Originalpublikation
Annette Tennstaedt, Markus Aswendt, Joanna Adamczak, Ursel Collienne, Marion Selt, Gabriele Schneider, Nadine Henn, Cordula Schaefer, Marie Lagouge, Dirk Wiedermann, Peter Kloppenburg, Mathias Hoehn


Human neural stem cell intracerebral grafts show spontaneous early neuronal differentiation after several weeks

Biomaterials 44 (2015) 143-154

Quelle

Prof. Dr. Mathias Hoehn | Max-Planck-Institut für Stoffwechselforschung, Köln

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Von der Genexpression zur Mikrostruktur des Gehirns
24.04.2018 | Forschungszentrum Jülich

nachricht Nano-Ampel zeigt Risiko an
24.04.2018 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von der Genexpression zur Mikrostruktur des Gehirns

24.04.2018 | Biowissenschaften Chemie

Bestrahlungserfolg bei Hirntumoren lässt sich mit kombinierter PET/MRT vorhersagen

24.04.2018 | Medizintechnik

RWI/ISL-Containerumschlag-Index auf hohem Niveau deutlich rückläufig

24.04.2018 | Wirtschaft Finanzen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics