Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von der Pflanze in den Mikroreaktor

17.10.2016

Wissenschaftlern des Leibniz-Instituts für Pflanzenbiochemie (IPB) ist es gelungen die Biosynthese von Carnosinsäure vollständig aufzuklären. Mit diesem Wissen konnten die Hallenser Pflanzenforscher um Prof. Alain Tissier den ökonomisch wertvollen Pflanzenstoff auf biotechnologischem Weg in Hefezellen herstellen. Das Projekt wurde in der renommierten Zeitschrift Nature Communications publiziert.

Carnosinsäure ist ein natürliches Antioxidationsmittel, das in den Blättern von Rosmarin und Salbei vorkommt. Es wird weltweit als Konservierungs- und Aromastoff in Fleischwaren, Ölen, Fetten, Saucen und Tierfutter verwendet. Obgleich man Carnosinsäure in steigenden Mengen benötigt, wird es wegen fehlender Syntheseverfahren noch immer aus Pflanzen gewonnen.


Noch wird Carnosinsäure aus Rosmarin gewonnen.

Foto: IPB


Carnosinsäure

Grafik: IPB

Getrocknete Salbei- und Rosmarinblätter enthalten maximal 2,5 Prozent Carnosinsäure – es erfordert demnach eine große Menge an Pflanzenmaterial, um die Produktion des Antioxidationsmittels im Industriemaßstab zu gewährleisten.

Die Biosynthese von Carnosinsäure innerhalb der Pflanze findet in mehreren Reaktionsschritten statt, die von unterschiedlichen Enzymen katalysiert werden. Jenes Enzym, das den letzten Schritt der Reaktionskette katalysiert, war bisher noch nicht bekannt. Diese Erkenntnislücke wurde von den Pflanzenexperten des IPB jetzt geschlossen.

Dabei fanden sie ein zusätzliches, bisher unbekanntes Zwischenprodukt und neue Enzyme, die von ihnen beschrieben und charakterisiert wurden. Mit dem Wissen um alle beteiligten Reaktionspartner konnten die Wissenschaftler die Gene, die für die entsprechenden Enzyme codieren, in Hefezellen einbringen und diese dazu bewegen, Carnosinsäure herzustellen. Damit ist der erste Schritt für die Entwicklung eines biotechnologischen Produktionsverfahrens des Antioxidationsmittels gelegt.

Carnosinsäure ist zudem der Ausgangsstoff für die Biosynthese von vielen weiteren phenolischen Diterpenen, die als bioaktive Substanzen gegen Entzündungen, Krebs und verschiedenen neurodegenerative Erkrankungen wirken.

Auch aus diesem Grund wird es interessant werden Carnosinsäure künftig biotechnologisch und damit unabhängig von Klima- schwankungen, Bodenqualität und Ernteerträgen zu produzieren.

Originalpublikation:
Ulschan Scheler, Wolfgang Brandt, Andrea Porzel, Kathleen Rothe, David Manzano, Dragana Bozic, Dimitra Papaefthimiou, Gerd Ulrich Balcke, Anja Henning, Swanhild Lohse, Sylvestre Marillonnet, Angelos K. Kanellis, Albert Ferrer & Alain Tissier. Elucidationof the bioynthesis of carnosic acid and its reconstitution in yeast. Nature Communications 7: 12942, doi:10.1038/ncomms12
http://www.nature.com/articles/ncomms12942

Ansprechpartner:
Prof. Alain Tissier
Tel.: 0345 5582 1500
alain.tissier@ipb-halle.de

Weitere Informationen:

http://www.nature.com/articles/ncomms12942
http://www.ipb-halle.de/oeffentlichkeit/aktuelles/artikel-detail/von-der-pflanze...

Dipl.Biol. Sylvia Pieplow | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten