Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von der Natur abgeschaut – Keramische Werkstoffe und Technologien für personalisierte Implantate

15.03.2017

Individuell angepasste Implantate, die vollständig in den Körper integriert und langfristig durch eigene Knochensubstanz ersetzt werden – dieser Gedanke kann bald Wirklichkeit werden. Möglich wird dies durch eine am Fraunhofer IKTS entwickelte keramische Material- und Verfahrenskombination.

Individuell angepasste Implantate, die vollständig in den Körper integriert und langfristig durch eigene Knochensubstanz ersetzt werden – dieser Gedanke kann bald Wirklichkeit werden. Möglich wird dies durch eine am Fraunhofer IKTS entwickelte keramische Material- und Verfahrenskombination.


Außen gedruckt, innen geschäumt – keramischer Knochenersatz.

© Fraunhofer IKTS


Poröse, gefriergeschäumte Knochenstruktur aus Hydroxylapatit.

© Fraunhofer IKTS

Ein menschlicher Knochen besteht aus einer dichten und festen äußeren Hülle (substantia corticalis) und einer inneren porösen Füllung (substantia spongiosa). Um solche in ihrer Struktur unterschiedlichen Knochen künftig als Implantat nachbilden zu können, wurden am Fraunhofer IKTS spezielle keramische Materialien entwickelt und zwei Technologien intelligent miteinander verknüpft: Die patientenspezifische, feste äußere Hülle des Knochens kommt dabei aus dem 3D-Drucker. Die schwammartige innere Knochenstruktur wird durch einen keramischen Schaum nachgebildet.

Vom keramischen Schaum zum Knochenimplantat

In einem ersten Schritt entwickelten die IKTS-Forscher um Dr. Matthias Ahlhelm aus keramischen Materialien wie Hydroxylapatit, Zirkonoxid oder auch Mischungen aus beiden über die sogenannte Gefrierschäumung poröse, knochenähnliche Strukturen.

Bei diesem Verfahren wird der Umgebungsdruck um eine wässrige, keramische Suspension in einem Gefriertrockner abgesenkt, wodurch die Suspension erst aufschäumt und dann schlagartig gefriert. Das enthaltene Wasser sublimiert, d. h. es verdunstet ohne vorher flüssig zu werden. Durch die anschließende Wärmebehandlung entsteht ein fester keramischer Schaum.

Biokompatibilität in Studien bestätigt

Die Biokompatibilität und -verträglichkeit dieser keramischen Schäume wurde in Zusammenarbeit mit dem Fraunhofer-Institut für Biomedizinische Technik IBMT in-vitro getestet. Dabei brachten die Wissenschaftler zunächst Fibroblastzellen von Mäusen auf die keramische Oberfläche auf und belegten, dass die Zellen prinzipiell auf dem Keramikschaum überleben und darüber hinaus sogar Stoffwechsel betreiben.

Um die nachgewiesene Biokompatibilität auch auf menschliche Zellen übertragen zu können, wurden anschließend humane mesenchymale Stammzellen aus dem Knochenmark, sogenannte Vorläuferzellen des Bindegewebes, verwendet. Mit Hilfe eines Markers konnte das Stoffwechselprodukt Kollagen auf der Keramikoberfläche sichtbar gemacht werden, was auf eine aktive Stoffwechselreaktion der Stammzellen schließen lässt.

Die Ergebnisse zeigen, dass diese Stammzellen den Keramikschaum besiedeln und befähigt sind, in unterschiedliche Zell- bzw. Gewebetypen, z. B. in Knochen- oder Muskelzellen, zu differenzieren. Dies ist ein wichtiges Indiz für die Biokompatibilität und -verträglichkeit dieser keramischen Materialien.

Eine gedruckte Hülle für den Knochen

Im nächsten Schritt suchten die Forscher nun ein Verfahren, um die porösen knochenähnlichen Strukturen mechanisch stabiler zu machen und zudem die patientenspezifische Knochenform zu realisieren. Die Wissenschaftler des Fraunhofer IKTS nutzten dabei ihre langjährigen Erfahrungen im Bereich der additiven Fertigung.

Mit dem ausgewählten 3D-Druckverfahren der Lithographie-basierten keramischen Fertigung (LCM) gelang es, einzelne Röhren, Halbschalen oder komplexe knochenähnliche Hüllen zu drucken – und das aus den gleichen Materialien wie die poröse Schaumkeramik. Entsprechend der 3D-Daten wird ein blaues Lichtprofil auf eine mit photosensitiven Monomeren gemischte keramische Suspension projiziert und diese genau an den belichteten Stellen ausgehärtet.

Schicht für Schicht entsteht so eine komplexe dreidimensionale Struktur. Im letzten Schritt wurden die beiden Verfahren miteinander kombiniert: In die gedruckten knochenähnlichen Hüllen wurde die keramische Suspension gefüllt und mittels Gefrierschäumung aufgeschäumt. Eine Herausforderung stellt derzeit noch die gemeinsame Wärmebehandlung der beiden strukturell unterschiedlichen Komponenten dar. Hier gilt es, das unterschiedliche Schwindungsverhalten der Materialien so aufeinander abzustimmen, dass es weder zu Rissen noch zu Verformungen in der Komponente kommt.

„Im Ergebnis dessen entsteht eine komplexe Struktur, die aufgrund der Verbindung von dichter äußerer Hülle und porösem Inneren den Weg zu personalisierbaren knochenähnlichen Implantaten ebnet, die bioaktiv und robust sind“, erklärt Dr. Matthias Ahlhelm, Wissenschaftler am Fraunhofer IKTS. „In naher Zukunft stehen erste In-vivo-Versuche an, in denen eventuelle Entzündungsreaktionen auf die keramischen Knochen sowie das Einwachsverhalten untersucht werden“, führt Ahlhelm fort. Hier arbeitet das Fraunhofer IKTS eng mit dem Fraunhofer IZI zusammen.

Die am Fraunhofer IKTS entwickelten keramischen Implantate könnten so künftig eine vielversprechende Lösung für die wiederherstellende Chirurgie sein, zum Beispiel bei Knochenkrebspatienten oder im Bereich Mund, Kiefer und Gesicht.

Weitere Informationen:

https://www.ikts.fraunhofer.de/de/press_media/press_releases/Werkstoffe_Technolo...
http://www.periscope.tv/FraunhoferIKTS

Dipl.-Chem. Katrin Schwarz | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie