Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von der Entzauberung magischer Pilze

29.08.2017

Jenaer Naturstoff- und Pilzforscher rekonstruierten erstmals die Biosynthese bewusstseinserweiternder Substanzen aus Pilzen

Seit fast 60 Jahren ist der Stoff namens Psilocybin bekannt. Er verleiht den sogenannten Magic Mushrooms, auch Zauberpilze genannt, die Magie – also ihre starke psychedelische Wirkung. Ein Geheimnis blieb jedoch: Wie genau bilden die Pilze der Gattung Psilocybe diese wirkungs-volle Substanz? Das Forschungsteam um den Jenaer Professor Dirk Hoffmeister konnte es jetzt lüften.


Der Pilz Psilocybe cyanescens, auch bläuender Kahlkopf genannt, ist ein stark psilocybinbildender Pilz.

Dirk Hoffmeister

Artefakte und Kunstwerke beweisen, dass indigene Völker Mittelamerikas bereits um 2000 vor unserer Zeitrechnung mit halluzinogenen Pilzen experimentierten. Sie verehrten die Zauberpilze und nutzten sie zu spirituellen Zwecken.

Was die Pilze zum Zaubern bringt

Zwar ist die naturwissenschaftliche Forschung seit den 1950er Jahren fasziniert von der pharmakologischen Wirkung der Pilze. Von göttlicher Zauberei und Magie lassen sich Wissenschaftler jedoch nicht beeindrucken: Schon 1958 isolierte der Schweizer Chemiker Albert Hofmann den Wirkstoff Psilocybin und klärte seine einzigartige chemische Struktur auf.

Auch die Wirkungsweise des Naturstoffs, der dem „Glückshormon“ Serotonin ähnelt, ist weitgehend nach-vollzogen. Darüber hinaus zeigten erste Studien aus den 1960er Jahren mögliche Wege auf, wie die Pilze dieses besondere Molekül bilden.

Doch welche Werkzeuge, sprich Enzyme, den Pilzen die besondere Fähigkeit zur Bildung von Psilocybin verleihen, war bisher unbekannt.

Dirk Hoffmeister ist Professor am Pharmazeutischen Institut der Friedrich-Schiller-Universität Jena und leitet eine assoziierte Forschungsgruppe am Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie – Hans-Knöll-Institut. Hoffmeisters Forscherteam gelang es nun, die Enzyme zu identifizieren, mit deren Hilfe die Pilze ihre magischen Substanzen aufbauen.

Die Wissenschaftler stellten bei ihren Untersuchungen außerdem fest, dass die Biosynthese in einer anderen Reihenfolge stattfindet, als es ältere Studien beschrieben. Ihre Ergebnisse erschienen kürzlich in der renommierten Zeitschrift Angewandte Chemie.

Bahnbrechender Schritt zur kommerzialisierten Anwendung

Mithilfe des Modell-Bakteriums Escherichia coli ließen sich die zuvor identifizierten Enzyme produzieren. Auf diese Weise konnten Hoffmeister und Kollegen die Wirkstoff-Synthese im Labor rekonstruieren und Psilocybin ohne Pilzzellen herstellen. Die vorangegangenen Untersuchungen waren damit bestätigt.

„Mit der Herstellung von Psilocybin mittels Enzymen machten wir einen großen Schritt, dieses stark wirksame Molekül besser bereitzustellen“, macht Hoffmeister deutlich.

„Hierzulande sind Magic Mushrooms zwar hauptsächlich als Freizeitdroge bekannt und haben dementsprechend ein zweifelhaftes Image. Doch das pharmazeutische Interesse an deren Wirkstoff Psilocybin nimmt gegenwärtig zu“, präzisiert der Professor die Bedeutung seiner Forschungs-ergebnisse mit dem Hinweis auf erste klinische Studien. Sie attestieren der Substanz Heilkräfte: Beispielsweise könnte sie in einer geringen Dosis die Angst von Patienten mit lebensbedrohlichem Krebs reduzieren oder die Symptome von Depressionen und Antriebslosigkeit lindern.

Dr. Michael Ramm | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.hki-jena.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics