Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von biologischen Haarnadeln und Polymer-Spaghetti

09.10.2014

Wenn ein eigentlich festes Material weich wird, liegt die Vermutung nahe, dass es irgendwie beschädigt ist. Das trifft nicht immer zu, wie Jülicher und niederländische Forscher nun in der Fachzeitschrift Nature Communications berichten.

Die Wissenschaftler haben starre biologische Netzwerke aus fadenförmigen Polymerbauteilen untersucht, die wie ein Haufen Spaghetti verschlungen sind. Geraten diese sogenannten Filamentfäden ins Fließen, formen sie sich zu haarnadelähnlichen Gebilden um, die fast berührungslos geordnet aneinander vorbeigleiten. Der Mechanismus könnte unter anderem bei der Suche nach erneuerbaren Alternativen für ölbasierte Polymere hilfreich sein.


Fluoreszenzmarkierte F-Aktinfilamente in einer Lösung verschlungener, nicht-markierter F-Aktinfilamente im Fluss, aufgenommen mit einem 3D-Konfokalmikrioskop.

Forschungszentrum Jülich

Unsere Zellen enthalten Filamente aus sogenannten Biopolymeren. An ihnen lassen sich aktive Bewegungen beobachten, die durch molekulare Motorproteine hervorgerufen werden. Da die entsprechenden Filamente weder vollflexibel noch völlig steif sind, bezeichnet man sie als „semiflexible“ Polymere.

Wird die Scherrate – ein Maß für den Geschwindigkeitsgradienten oder auch: Geschwindigkeitsunterschiede – innerhalb einer im Fluss befindlichen Lösung aus semiflexiblen Polymeren erhöht, nimmt ihre Fließfähigkeit auf einmal stark zu. Das Fließverhalten von Ketchup ist ein bekanntes Beispiel für diese „Scherverdünnung“.

Prof. Pavlik Lettinga vom Forschungszentrum Jülich und Prof. Gijsje Koenderink vom AMOLF konnten gemeinsam erstmals die vollständige dreidimensionale Form von Filamenten im Fluss beobachten und so eine Vielzahl bisher nicht zugänglicher Informationen über dieses Phänomen gewinnen.

Die beiden Arbeitsgruppen stellten fest, dass die Filamente im Ruhezustand unregelmäßig geformt und stark ineinander verschlungen sind, während sie im Fluss eine gebogene Form einnehmen. In dieser Gestalt, die an Haarnadeln erinnert, lösen sich die Polymerfäden voneinander. So können sie frei aneinander vorbei gleiten, ohne sich zu verhaken und ineinander zu verknäueln – die Fließfähigkeit verbessert sich.

„Nun verstehen wir besser, warum viele Systeme fließen können, wenn man sie stört, während sie fest sind, wenn man es nicht tut“, betont Prof. Pavlik Lettinga vom Jülicher Institute of Complex Systems. „In der Industrie werden heute überwiegend flexible Polymere genutzt, aber mit steigendem Ölpreis nimmt das Interesse an Alternativen zu.

Viele natürliche Systeme, wie Zellulose und Amyloide, sind relativ steif. Ein besseres Verständnis davon, wie solche Systeme sich verhalten, kann eine effizientere Verarbeitung unter geringerem Energieeinsatz ermöglichen. Mit diesem Wissen lassen sich außerdem Bottom-up-Ansätze für das Design ganz unterschiedlicher Produkte entwickeln.“

Die Wissenschaftler hatten sich vorgenommen, winzige Biopolymerfilamente eines Netzwerks aus Muskelzellen zu untersuchen, während sie in Fluss versetzt werden. Dazu markierten sie einzelne Filamente mit einem Fluoreszenzfarbstoff und beobachteten sie anschließend in einer gegenläufig rotierenden Vorrichtung unter einem Konfokalmikroskop.

“Unsere Erkenntnisse helfen auch dabei, bestimmte biologische Prozesse zu verstehen, wie den sogenannten Zytoplasmischen Fluss“, sagt Prof. Gijsje Koenderink von AMOLF. „Er kommt in vielen embryonalen Stadien und in großen Pflanzenzellen vor. So genannte Aktinfilamente oder Mikrotubuli erzeugen dabei gemeinsam mit molekularen Motorproteinen Bewegungen, die beim Transport von Nährstoffen und Zellbestandteilen, etwa Organellen, helfen. Unsere Ergebnisse geben einen Einblick in die winzigen Strukturänderungen, die bei solchen Bewegungen in biologischen Systemen passieren.“

Originalveröffentlichung:
Inka Kirchenbuechler, Donald Guu, Nicholas A. Kurniawan, Gijsje H. Koenderink, M. Paul Lettinga; Direct visualization of flow-induced conformational transitions of single actin filaments in entangled solutions; Nature Communications (2014) | DOI: 10.1038/ncomms5060

Ansprechpartner:
Prof. Pavlik Lettinga
Forschungszentrum Jülich
Institute of Complex Systems – Soft Condensed Matter (ICS-3)
Tel: 02461 61-4515
E-Mail: p.lettinga@fz-juelich.de

Prof. Gijsje Koenderink
FOM Institute AMOLF – Soft Biological Matter
Tel: +31 20 754 71 00
E-Mail: G.Koenderink@amolf.nl

Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin Forschungszentrum Jülich
Tel. 02461 61-6048
E-Mail: a.wenzik@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de
http://www.fz-juelich.de/ics/ics-3/DE/
http://www.fz-juelich.de/SharedDocs/Personen/ICS/ICS-3/EN/Lettinga_P.html
http://www.fz-juelich.de/ics/ics-7/DE/
http://www.amolf.nl/research/biological-soft-matter/

Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie