Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von biologischen Haarnadeln und Polymer-Spaghetti

09.10.2014

Wenn ein eigentlich festes Material weich wird, liegt die Vermutung nahe, dass es irgendwie beschädigt ist. Das trifft nicht immer zu, wie Jülicher und niederländische Forscher nun in der Fachzeitschrift Nature Communications berichten.

Die Wissenschaftler haben starre biologische Netzwerke aus fadenförmigen Polymerbauteilen untersucht, die wie ein Haufen Spaghetti verschlungen sind. Geraten diese sogenannten Filamentfäden ins Fließen, formen sie sich zu haarnadelähnlichen Gebilden um, die fast berührungslos geordnet aneinander vorbeigleiten. Der Mechanismus könnte unter anderem bei der Suche nach erneuerbaren Alternativen für ölbasierte Polymere hilfreich sein.


Fluoreszenzmarkierte F-Aktinfilamente in einer Lösung verschlungener, nicht-markierter F-Aktinfilamente im Fluss, aufgenommen mit einem 3D-Konfokalmikrioskop.

Forschungszentrum Jülich

Unsere Zellen enthalten Filamente aus sogenannten Biopolymeren. An ihnen lassen sich aktive Bewegungen beobachten, die durch molekulare Motorproteine hervorgerufen werden. Da die entsprechenden Filamente weder vollflexibel noch völlig steif sind, bezeichnet man sie als „semiflexible“ Polymere.

Wird die Scherrate – ein Maß für den Geschwindigkeitsgradienten oder auch: Geschwindigkeitsunterschiede – innerhalb einer im Fluss befindlichen Lösung aus semiflexiblen Polymeren erhöht, nimmt ihre Fließfähigkeit auf einmal stark zu. Das Fließverhalten von Ketchup ist ein bekanntes Beispiel für diese „Scherverdünnung“.

Prof. Pavlik Lettinga vom Forschungszentrum Jülich und Prof. Gijsje Koenderink vom AMOLF konnten gemeinsam erstmals die vollständige dreidimensionale Form von Filamenten im Fluss beobachten und so eine Vielzahl bisher nicht zugänglicher Informationen über dieses Phänomen gewinnen.

Die beiden Arbeitsgruppen stellten fest, dass die Filamente im Ruhezustand unregelmäßig geformt und stark ineinander verschlungen sind, während sie im Fluss eine gebogene Form einnehmen. In dieser Gestalt, die an Haarnadeln erinnert, lösen sich die Polymerfäden voneinander. So können sie frei aneinander vorbei gleiten, ohne sich zu verhaken und ineinander zu verknäueln – die Fließfähigkeit verbessert sich.

„Nun verstehen wir besser, warum viele Systeme fließen können, wenn man sie stört, während sie fest sind, wenn man es nicht tut“, betont Prof. Pavlik Lettinga vom Jülicher Institute of Complex Systems. „In der Industrie werden heute überwiegend flexible Polymere genutzt, aber mit steigendem Ölpreis nimmt das Interesse an Alternativen zu.

Viele natürliche Systeme, wie Zellulose und Amyloide, sind relativ steif. Ein besseres Verständnis davon, wie solche Systeme sich verhalten, kann eine effizientere Verarbeitung unter geringerem Energieeinsatz ermöglichen. Mit diesem Wissen lassen sich außerdem Bottom-up-Ansätze für das Design ganz unterschiedlicher Produkte entwickeln.“

Die Wissenschaftler hatten sich vorgenommen, winzige Biopolymerfilamente eines Netzwerks aus Muskelzellen zu untersuchen, während sie in Fluss versetzt werden. Dazu markierten sie einzelne Filamente mit einem Fluoreszenzfarbstoff und beobachteten sie anschließend in einer gegenläufig rotierenden Vorrichtung unter einem Konfokalmikroskop.

“Unsere Erkenntnisse helfen auch dabei, bestimmte biologische Prozesse zu verstehen, wie den sogenannten Zytoplasmischen Fluss“, sagt Prof. Gijsje Koenderink von AMOLF. „Er kommt in vielen embryonalen Stadien und in großen Pflanzenzellen vor. So genannte Aktinfilamente oder Mikrotubuli erzeugen dabei gemeinsam mit molekularen Motorproteinen Bewegungen, die beim Transport von Nährstoffen und Zellbestandteilen, etwa Organellen, helfen. Unsere Ergebnisse geben einen Einblick in die winzigen Strukturänderungen, die bei solchen Bewegungen in biologischen Systemen passieren.“

Originalveröffentlichung:
Inka Kirchenbuechler, Donald Guu, Nicholas A. Kurniawan, Gijsje H. Koenderink, M. Paul Lettinga; Direct visualization of flow-induced conformational transitions of single actin filaments in entangled solutions; Nature Communications (2014) | DOI: 10.1038/ncomms5060

Ansprechpartner:
Prof. Pavlik Lettinga
Forschungszentrum Jülich
Institute of Complex Systems – Soft Condensed Matter (ICS-3)
Tel: 02461 61-4515
E-Mail: p.lettinga@fz-juelich.de

Prof. Gijsje Koenderink
FOM Institute AMOLF – Soft Biological Matter
Tel: +31 20 754 71 00
E-Mail: G.Koenderink@amolf.nl

Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin Forschungszentrum Jülich
Tel. 02461 61-6048
E-Mail: a.wenzik@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de
http://www.fz-juelich.de/ics/ics-3/DE/
http://www.fz-juelich.de/SharedDocs/Personen/ICS/ICS-3/EN/Lettinga_P.html
http://www.fz-juelich.de/ics/ics-7/DE/
http://www.amolf.nl/research/biological-soft-matter/

Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikro-U-Boote für den Magen
24.01.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Echoortung - Lernen, den Raum zu hören
24.01.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy