Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von biologischen Haarnadeln und Polymer-Spaghetti

09.10.2014

Wenn ein eigentlich festes Material weich wird, liegt die Vermutung nahe, dass es irgendwie beschädigt ist. Das trifft nicht immer zu, wie Jülicher und niederländische Forscher nun in der Fachzeitschrift Nature Communications berichten.

Die Wissenschaftler haben starre biologische Netzwerke aus fadenförmigen Polymerbauteilen untersucht, die wie ein Haufen Spaghetti verschlungen sind. Geraten diese sogenannten Filamentfäden ins Fließen, formen sie sich zu haarnadelähnlichen Gebilden um, die fast berührungslos geordnet aneinander vorbeigleiten. Der Mechanismus könnte unter anderem bei der Suche nach erneuerbaren Alternativen für ölbasierte Polymere hilfreich sein.


Fluoreszenzmarkierte F-Aktinfilamente in einer Lösung verschlungener, nicht-markierter F-Aktinfilamente im Fluss, aufgenommen mit einem 3D-Konfokalmikrioskop.

Forschungszentrum Jülich

Unsere Zellen enthalten Filamente aus sogenannten Biopolymeren. An ihnen lassen sich aktive Bewegungen beobachten, die durch molekulare Motorproteine hervorgerufen werden. Da die entsprechenden Filamente weder vollflexibel noch völlig steif sind, bezeichnet man sie als „semiflexible“ Polymere.

Wird die Scherrate – ein Maß für den Geschwindigkeitsgradienten oder auch: Geschwindigkeitsunterschiede – innerhalb einer im Fluss befindlichen Lösung aus semiflexiblen Polymeren erhöht, nimmt ihre Fließfähigkeit auf einmal stark zu. Das Fließverhalten von Ketchup ist ein bekanntes Beispiel für diese „Scherverdünnung“.

Prof. Pavlik Lettinga vom Forschungszentrum Jülich und Prof. Gijsje Koenderink vom AMOLF konnten gemeinsam erstmals die vollständige dreidimensionale Form von Filamenten im Fluss beobachten und so eine Vielzahl bisher nicht zugänglicher Informationen über dieses Phänomen gewinnen.

Die beiden Arbeitsgruppen stellten fest, dass die Filamente im Ruhezustand unregelmäßig geformt und stark ineinander verschlungen sind, während sie im Fluss eine gebogene Form einnehmen. In dieser Gestalt, die an Haarnadeln erinnert, lösen sich die Polymerfäden voneinander. So können sie frei aneinander vorbei gleiten, ohne sich zu verhaken und ineinander zu verknäueln – die Fließfähigkeit verbessert sich.

„Nun verstehen wir besser, warum viele Systeme fließen können, wenn man sie stört, während sie fest sind, wenn man es nicht tut“, betont Prof. Pavlik Lettinga vom Jülicher Institute of Complex Systems. „In der Industrie werden heute überwiegend flexible Polymere genutzt, aber mit steigendem Ölpreis nimmt das Interesse an Alternativen zu.

Viele natürliche Systeme, wie Zellulose und Amyloide, sind relativ steif. Ein besseres Verständnis davon, wie solche Systeme sich verhalten, kann eine effizientere Verarbeitung unter geringerem Energieeinsatz ermöglichen. Mit diesem Wissen lassen sich außerdem Bottom-up-Ansätze für das Design ganz unterschiedlicher Produkte entwickeln.“

Die Wissenschaftler hatten sich vorgenommen, winzige Biopolymerfilamente eines Netzwerks aus Muskelzellen zu untersuchen, während sie in Fluss versetzt werden. Dazu markierten sie einzelne Filamente mit einem Fluoreszenzfarbstoff und beobachteten sie anschließend in einer gegenläufig rotierenden Vorrichtung unter einem Konfokalmikroskop.

“Unsere Erkenntnisse helfen auch dabei, bestimmte biologische Prozesse zu verstehen, wie den sogenannten Zytoplasmischen Fluss“, sagt Prof. Gijsje Koenderink von AMOLF. „Er kommt in vielen embryonalen Stadien und in großen Pflanzenzellen vor. So genannte Aktinfilamente oder Mikrotubuli erzeugen dabei gemeinsam mit molekularen Motorproteinen Bewegungen, die beim Transport von Nährstoffen und Zellbestandteilen, etwa Organellen, helfen. Unsere Ergebnisse geben einen Einblick in die winzigen Strukturänderungen, die bei solchen Bewegungen in biologischen Systemen passieren.“

Originalveröffentlichung:
Inka Kirchenbuechler, Donald Guu, Nicholas A. Kurniawan, Gijsje H. Koenderink, M. Paul Lettinga; Direct visualization of flow-induced conformational transitions of single actin filaments in entangled solutions; Nature Communications (2014) | DOI: 10.1038/ncomms5060

Ansprechpartner:
Prof. Pavlik Lettinga
Forschungszentrum Jülich
Institute of Complex Systems – Soft Condensed Matter (ICS-3)
Tel: 02461 61-4515
E-Mail: p.lettinga@fz-juelich.de

Prof. Gijsje Koenderink
FOM Institute AMOLF – Soft Biological Matter
Tel: +31 20 754 71 00
E-Mail: G.Koenderink@amolf.nl

Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin Forschungszentrum Jülich
Tel. 02461 61-6048
E-Mail: a.wenzik@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de
http://www.fz-juelich.de/ics/ics-3/DE/
http://www.fz-juelich.de/SharedDocs/Personen/ICS/ICS-3/EN/Lettinga_P.html
http://www.fz-juelich.de/ics/ics-7/DE/
http://www.amolf.nl/research/biological-soft-matter/

Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Bluthochdruckschalter in der Nebenniere
20.02.2018 | Forschungszentrum Jülich GmbH

nachricht Markierung für Krebsstammzellen
20.02.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics