Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom "Wiegen" der Atome mit Elektronen

11.10.2016

Die chemischen Eigenschaften von Atomen werden durch die Anzahl der Protonen in deren Kern bestimmt. Dementsprechend werden Atome im Periodensystem der Elemente angeordnet. Jedoch können selbst chemisch identische Atome eine unterschiedliche Masse aufweisen – diese Varianten nennt man Isotope. Obwohl Verfahren zur Messung solcher Massenunterschiede existieren, haben diese nicht deren exakte Position in einer Probe verraten. Im renommierten Open Access Journal "Nature Communications" veröffentlichen Physiker um Toma Susi von der Universität Wien nun eine Methode zum "Wiegen" von Atomen mittels hochaufgelöster bildgebender Verfahren an Graphen, der nur Ein-Atom-dicken Schicht von Kohlenstoff.

Die verschiedenen, natürlich vorkommenden chemischen Elemente haben jedes für sich ganz eigene, spezifische Isotope. Bei Kohlenstoff kommen auf jedes stabile Kohlenstoff-Isotop 13C neunundneunzig Atome des leichteren stabilen Kohlenstoff-Isotops 12C, welches ein Neutron weniger im Kern aufweist.


Toma Susi von der Fakultät für Physik hat eine neue Methode zum "Wiegen" von Atomen mittels hochaufgelöster bildgebender Verfahren an Graphen getest.


Je leichter das Atom, desto weniger Elektronen werden im Mittel benötigt, um es herauszustoßen.

Abgesehen von diesen natürlichen Variationen kann Materie aus mit Isotopen angereicherten chemischen Stoffen gezüchtet werden. Das ermöglicht den WissenschafterInnen zu untersuchen, wie sich Atome zu Festkörpern anordnen, um z.B. ihre Synthese zu verbessern. Die meisten traditionellen Methoden zur Messung der Isotopenanteile erfordern jedoch die Zerstörung einer größeren Menge der Probe oder sind auf eine Auflösung von hunderten Nanometer beschränkt, wodurch wichtige Details verschleiert bleiben.

In ihrer neuen Studie unter der Leitung von Jani Kotakoski haben Forscher der Universität Wien das hochentwickelte Rastertransmissionselektronenmikroskop Nion UltraSTEM100 eingesetzt, um Isotope auf Nanometer-kleinen Flächen einer Graphen-Probe zu messen. Dieselben energetischen Elektronen, die ein Bild der Graphenstruktur entstehen lassen, können auch je ein Atom herausschlagen, indem sie am Kohlenstoffkern abgelenkt werden.

Da das 13C-Isotop eine größere Masse hat, kann ein Elektron einem 12C-Atom einen geringfügig kräftigeren Stoß versetzen und es so einfacher herausschlagen. Wie viele Elektronen im Durchschnitt dafür nötig sind, lässt die lokale Isotopenkonzentration abschätzen. "Der Schlüssel zum Erfolg war die Kombination präziser Experimente mit einem verbesserten theoretischen Modell des Prozesses", so Toma Susi, Erstautor der Studie.

Die Publikation in Nature Communications ermöglichte es dem Team, der Idee von Open Science voll gerecht zu werden. Zusätzlich zur Veröffentlichung der Gutachten ihrer KollegInnen wurde neben ihrem eigentlichen Forschungsartikel eine umfangreiche Beschreibung der Methoden und Analysen beigefügt. Die Wissenschafter gingen sogar noch einen Schritt weiter und haben ihre mikroskopischen Daten auf den internetbasierten Speicherdienst figshare hochgeladen.

Jeder mit einer Internetverbindung kann somit auf die Gigabyte an hochaufgelösten Bildern frei zugreifen, diese verwenden und zitieren. Toma Susi fährt fort: "Meines Wissens ist dies das erste Mal, dass elektronen-mikroskopische Daten auf dieser Skala offen geteilt werden."

Die Ergebnisse zeigen, dass moderne hochaufgelöste Elektronenmikroskope zwischen verschiedenen Kohlenstoff-Isotopen unterscheiden können. Obwohl diese Methode soweit nur für Graphen demonstriert wurde, ist es prinzipiell möglich, sie auf andere zweidimensionale Materialien auszuweiten. Dazu haben die Wissenschafter eine Patentanmeldung auf die neue Methode eingereicht. "Moderne Mikroskope erlauben uns schon jetzt alle atomaren Abstände in Festkörpern aufzulösen und zu sehen, aus welchen chemischen Elementen diese bestehen. Nun können wir Isotope zu dieser Liste hinzufügen", fasst Jani Kotakoski abschließend zusammen.

Finanzielle Unterstützung vom Fonds zur Förderung der wissenschaftlichen Forschung (FWF), dem Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF), und dem European Research Council (ERC) hat direkt zur Durchführung dieser Forschung beigetragen.

Publikation in Nature Communications:
Isotope analysis in the transmission electron microscope: Toma Susi, Christoph Hofer, Giacomo Argentero, Gregor T. Leuthner, Timothy J. Pennycook, Clemens Mangler, Jannik C. Meyer & Jani Kotakoski. Nature Communications | 7:13040 |
DOI: 10.1038/ncomms13040.

Offene Daten:
Atomic resolution electron irradiation time series of isotopically labeled monolayer graphene: Toma Susi, Christoph Hofer, Giacomo Argentero, Gregor T. Leuthner, Timothy J. Pennycook, Clemens Mangler, Jannik C. Meyer & Jani Kotakoski. figshare (2016).
DOI: 10.6084/m9.figshare.c.3311946.v1

Infographik (CC BY):
http://dim.univie.ac.at/uploads/media/Susi_NComms2016_DE.pdf

Wissenschaftliche Kontakte
Ass.-Prof. Dr. Jani Kotakoski
Physik Nanostrukturierter Materialen, Fakultät für Physik
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-728 44
jani.kotakoski@univie.ac.at

Dr. Toma Susi
Physik Nanostrukturierter Materialen, Fakultät für Physik
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-728 55
toma.susi@univie.ac.at

Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 15 Fakultäten und vier Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.800 WissenschafterInnen. Die Universität Wien ist damit auch die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. 1365 gegründet, feierte die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum. www.univie.ac.at

Alexandra Frey | Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Viren ihren Lebenszyklus mit begrenzten Mitteln effektiv sicherstellen
20.02.2017 | Universität zu Lübeck

nachricht Zellstoffwechsel begünstigt Tumorwachstum
20.02.2017 | Veterinärmedizinische Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Welt der keramischen Werkstoffe - 4. März 2017

20.02.2017 | Veranstaltungen

Schwerstverletzungen verstehen und heilen

20.02.2017 | Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovative Antikörper für die Tumortherapie

20.02.2017 | Medizin Gesundheit

Multikristalline Siliciumsolarzelle mit 21,9 % Wirkungsgrad – Weltrekord zurück am Fraunhofer ISE

20.02.2017 | Energie und Elektrotechnik

Wie Viren ihren Lebenszyklus mit begrenzten Mitteln effektiv sicherstellen

20.02.2017 | Biowissenschaften Chemie