Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom Termitenmittel zur molekularen Kupplung

01.09.2014

Sulfonylfluorid-Austausch als neue leistungsstarke Reaktion für die Click-Chemie

Kupplungen molekularer Bausteine, die fast so einfach wie per Druckknopf ablaufen, lassen sich mit der so genannten Click-Chemie verwirklichen. Amerikanische Wissenschaftler stellen in der Zeitschrift Angewandte Chemie nun einen weiteren Meilenstein für das Click-Konzept vor:


Der Sulfonylfluorid-Austausch (SuFEx) dient zum Aufbau von robusten anorganischen Brücken zwischen Kohlenstoffzentren und eröffnet ein noch gänzlich unerforschtes chemisches Universum.

(c) Wiley-VCH

Der Sulfonylfluorid-Austausch (SuFEx) dient zum Aufbau von robusten anorganischen Brücken zwischen Kohlenstoffzentren und eröffnet ein noch gänzlich unerforschtes chemisches Universum mit unzähligen neuen Molekülen, die die Basis für die Entwicklung von Wirkstoffen, Diagnostika, Kunststoffen, „intelligenten“ Materialien und vielen anderen Produkten bilden könnten.

Das in den 90er Jahren von Nobelpreisträger K. Barry Sharpless mitentwickelte Konzept der Click-Chemie zielt darauf ab, Zielmoleküle schnell und zielgerichtet aus kleineren Einheiten zu synthetisieren unter Verwendung von Reaktionen, die spezifisch ablaufen, hohe Ausbeuten liefern, breit anwendbar und umweltfreundlich sind. Die Synthesen müssen zudem auf billigen, leicht verfügbaren Reagenzien basieren, die unter milden, einfachen Bedingungen reagieren. Nach der Entdeckung der so genannten Azid-Alkin-Cycloaddition in 2002 durch das Sharpless-Team setzte sich das Click-Konzept als universelle Methode in der Chemie durch.

Das Team um Sharpless vom The Scripps Research Institute, La Jolla (CA, USA), und M. G. Finn hat jetzt eine weitere bahnbrechende Click-Reaktion entwickelt, die „Sulfur Fluoride Exchange“-Reaktion, kurz SuFEx. Sie nutzt die ganz spezielle Reaktivität von Schwefel-Fluoriden aus und ermöglicht es Chemikern, Moleküle ihrer Wahl miteinander zu verbinden. Wie die meisten Click-Reaktionen ist es ein an sich alter Prozess, der verbessert wurde und es jetzt ermöglicht, die bislang unterschätzte Sulfatbindung als ein universell einsetzbares Verbindungsstück für die Verknüpfung molekularer Bausteine vielfältig zu nutzen.

Ausgangspunkt war eine gängige kommerziell erhältliche Chemikalie, die bisher als weitestgehend inert angesehen wurde – zu Unrecht, wie Sharpless und seine Mitarbeiter herausgefunden haben: Sulfurylfluorid, SO2F2, das als Begasungsmittel gegen verschiedene Schädlinge, wie Termiten, eingesetzt wird. Das Team war in der Lage, die Chemikalie reaktiv zu machen – in einer verlässlichen und vorhersagbaren Weise. Während der SuFEx-Reaktion muss das Fluoridion aus der Bindung mit einem sechswertigen Schwefel abgespalten werden, das ist nicht so einfach und daher ist die SO2–F-Einheit bemerkenswert stabil unter typischen sauren und basischen Umgebungen. Diese Bindung erfüllt damit ein zentrales Kriterium der Click-Chemie, nämlich unter den meisten Bedingungen „unsichtbar“ zu bleiben und erst auf Wunsch zum Leben erweckt zu werden.

Eine breite Palette potenzieller Anwendungsbereiche tut sich für diese Reaktion auf. Das Sharpless-Team entwickelte mit V. V. Fokin eine effiziente, nahezu quantitative Synthese hochmolekularer Polysulfate, die sich gut auf den industriellen Maßstab übertragen lassen sollte. Die über Sulfat-Gruppen verknüpften Polymere sind Schwefel-Analoga der Polycarbonate und bilden eine neue Klasse von Kunststoffen mit dem Potenzial, heutigen Materialien überlegen zu sein. Besonderer Vorteil: Während Polycarbonate unter Wassereinfluss leicht das Monomer Bisphenol A freisetzen können, einen für Gesundheit und Umwelt problematischen Stoff mit hormonähnlicher Wirkung, sind Polysulfate stabil gegenüber Hydrolyse, das heißt, sie können keine Monomere freisetzen.

Das ist aber erst eine Anwendung der SuFEx-Reaktionen, eine große Bandbreite weiterer Reaktionen mit anderen Bausteinen ist möglich. Vorteilhaft für die Biowissenschaften: Sulfat-Verbindungsstücke kommen in der Chemie der Lebewesen nicht vor und die neue SuFEx-Reaktion stört biologische Abläufe nicht.

Angewandte Chemie: Presseinfo 31/2014

Autor: K. Barry Sharpless, The Scripps Research Institute, La Jolla (USA), http://www.scripps.edu/sharpless

Angewandte Chemie 2014, 126, No. 35, 9584–9603, Permalink to the article: http://dx.doi.org/10.1002/ange.201309399

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Weitere Informationen:

http://presse.angewandte.de

Dr. Renate Hoer | GDCh

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

Junge Physiologen Tagen in Jena

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

25.09.2017 | Messenachrichten

Fraunhofer ISE steigert Weltrekord für multikristalline Siliciumsolarzelle auf 22,3 Prozent

25.09.2017 | Energie und Elektrotechnik

Die Parkinson-Krankheit verstehen – und stoppen: aktuelle Fortschritte

25.09.2017 | Medizin Gesundheit