Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom Einzeller zum Vielzeller

07.11.2014

Max-Planck-Forscher verfolgen im Labor die Entstehung vielzelliger Lebewesen in Echtzeit

Alle vielzelligen Lebewesen stammen von Einzellern ab. Die Entwicklung vom Ein- zum Vielzeller ist nur möglich, wenn die ursprünglich unabhängigen Zellen miteinander zusammenarbeiten.


In solchen Kulturschalen mit verschiedenen Linien von Pseudomonas fluorescens haben Forscher die Entstehung einfacher fortpflanzungsfähiger Zellverbände aus Einzelzellen beobachtet.

© Gayle Ferguson

Dabei gelten sogenannte Betrügerzellen als ein großes Hindernis – also Zellen, die die Kooperation der anderen zum eigenen Vorteil ausnutzen. Wissenschaftler des Max Planck Instituts für Evolutionsbiologie in Plön haben zusammen mit Forschern aus Neuseeland und den USA beobachtet, wie einfache, fortpflanzungsfähige Zellverbände entstehen können.

In ihren Laborexperimenten hat sich aus Einzelzellen des Bakteriums Pseudomonas fluorescens eine Vorstufe eines vielzelligen Organismus mit einem einfachen Lebenszyklus entwickelt. Eine entscheidende Rolle kam dabei den Betrügerzellen zu.

Sie entwickelten sich zu einer Art Vorläufer von Geschlechtszellen, mit denen sich die Zellverbände vermehren konnten. Die Überlebensfähigkeit der Zellverbände nahm dabei immer mehr zu, die der Einzelzellen jedoch ab – ein Beleg dafür, dass ein neuer Organismus entstanden war.

Die einzelnen Bakterienzellen von Pseudomonas fluorescens leben für gewöhnlich unabhängig voneinander. Mutationen ermöglichen jedoch manchen Zellen, Haftproteine zu produzieren und nach der Zellteilung miteinander verbunden zu bleiben. Dadurch bilden sie zusammenhängende Zellverbände. In diesen Bakterienmatten profitieren die Bakterien von einem höheren Sauerstoff-Angebot. Dies gleicht den Aufwand für die Produktion der Haftproteine aus. „Diese Bakterienverbände oder Matten sind ein möglicher Ursprung der Vielzelligkeit. Allerdings müssen sie einen Weg finden, sich zu vermehren“, erklärt Paul Rainey, Leiter der Studie.

Zellen, die kein Haftprotein mehr bilden, können sich den Aufwand für die Haftproteine sparen und vom hohen Sauerstoffgehalt profitieren, ohne selbst etwas dazu beizutragen. Sammeln sich aber immer mehr dieser Betrügerzellen an, wird irgendwann zu wenig Klebstoff produziert und die Bakterienmatte löst sich auf. Aus bisherigen Ergebnissen haben Wissenschaftler lange Zeit gefolgert, dass die Evolution solche Betrüger eliminieren muss, die wie Trittbrettfahrer die Kooperationsbereitschaft anderer ausnutzen. Nur dann könnten sich vielzellige Organismen entwickeln.

Den Forschern zufolge ist dies nicht der Fall. Vielmehr fördern die Betrügerzellen die Entwicklung und Ausbreitung der Bakterienmatten. Obwohl sie die Matte zerstören, sind sie gleichzeitig ihr „Retter“. Sie könnten also den Ursprung von Keimzellen und spezialisierten Zellen darstellen – und damit den Ursprung der Fortpflanzung vielzelliger Organismen.

In den Experimenten verglichen die Forscher zwei verschiedene Lebenszyklen, die die Evolution der Bakterienmatten beeinflussten. Im ersten Fall entnahmen sie aus jeder Mattengeneration nur Betrügerzellen und züchteten daraus neue Kolonien. Im zweiten Fall entfernten die Wissenschaftler die Betrügerzellen. „Die Überlebenstauglichkeit der so entstanden Bakterienmatten, also ihre biologische Fitness, wuchs in beiden Fällen – unter der Voraussetzung, dass die Matten miteinander konkurrierten“, erklärt Katrin Hammerschmidt vom New Zealand Institute for Advanced Study.

Die Forscher stellten jedoch fest, dass sich in ihren Experimenten die biologische Fitness der Zellverbände von der der einzelnen Zellen abkoppelt, wenn Betrügerzellen Teil des Lebenszyklus sind: Verbände mit hoher Überlebensfähigkeit bestanden aus Zellen mit relativ gesehen geringer individueller Fitness. „Die Einzelzellen haben in diesen Verbänden also zugunsten der Allgemeinheit auf eigene Vorteile verzichtet. Die so entstandenen Bakterienmatten sind also mehr als ein zufälliger Zusammenschluss vieler Zellen. Sie haben sich vielmehr zu einem vielzelligen Organismus entwickelt, dessen biologische Fitness sich nicht mehr aus der Fitness seiner Einzelzellen ergibt, sagt Rainey.

Solche aus zwei Phasen bestehenden Lebenszyklen sind typisch die meisten heute lebenden vielzelligen Organismen. Möglicherweise sind die Zellen der Keimbahn, Ei- und Samenzellen, im Laufe der Evolution aus solchen egoistischen Betrügerzellen hervorgegangen.


Ansprechpartner

Prof. Dr. Paul Rainey
Max-Planck-Institut für Evolutionsbiologie, Plön

E-Mail: rainey@evolbio.mpg.de


Originalpublikation
Katrin Hammerschmidt, Caroline Rose, Ben Kerr and Paul B. Rainey

Life cycles, fitness decoupling and the evolution of multicellularity

Nature 6. November 2014 (doi:10.1038/nature13884)

Prof. Dr. Paul Rainey | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8739365/Rainey_Evolution_Vielzelligkeit_Betruegerzellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Diabetesforschung: Neuer Mechanismus zur Regulation des Insulin-Stoffwechsels gefunden
06.12.2016 | Universität Osnabrück

nachricht Was nach der Befruchtung im Zellkern passiert
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften