Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom Einzeller zum Vielzeller

07.11.2014

Max-Planck-Forscher verfolgen im Labor die Entstehung vielzelliger Lebewesen in Echtzeit

Alle vielzelligen Lebewesen stammen von Einzellern ab. Die Entwicklung vom Ein- zum Vielzeller ist nur möglich, wenn die ursprünglich unabhängigen Zellen miteinander zusammenarbeiten.


In solchen Kulturschalen mit verschiedenen Linien von Pseudomonas fluorescens haben Forscher die Entstehung einfacher fortpflanzungsfähiger Zellverbände aus Einzelzellen beobachtet.

© Gayle Ferguson

Dabei gelten sogenannte Betrügerzellen als ein großes Hindernis – also Zellen, die die Kooperation der anderen zum eigenen Vorteil ausnutzen. Wissenschaftler des Max Planck Instituts für Evolutionsbiologie in Plön haben zusammen mit Forschern aus Neuseeland und den USA beobachtet, wie einfache, fortpflanzungsfähige Zellverbände entstehen können.

In ihren Laborexperimenten hat sich aus Einzelzellen des Bakteriums Pseudomonas fluorescens eine Vorstufe eines vielzelligen Organismus mit einem einfachen Lebenszyklus entwickelt. Eine entscheidende Rolle kam dabei den Betrügerzellen zu.

Sie entwickelten sich zu einer Art Vorläufer von Geschlechtszellen, mit denen sich die Zellverbände vermehren konnten. Die Überlebensfähigkeit der Zellverbände nahm dabei immer mehr zu, die der Einzelzellen jedoch ab – ein Beleg dafür, dass ein neuer Organismus entstanden war.

Die einzelnen Bakterienzellen von Pseudomonas fluorescens leben für gewöhnlich unabhängig voneinander. Mutationen ermöglichen jedoch manchen Zellen, Haftproteine zu produzieren und nach der Zellteilung miteinander verbunden zu bleiben. Dadurch bilden sie zusammenhängende Zellverbände. In diesen Bakterienmatten profitieren die Bakterien von einem höheren Sauerstoff-Angebot. Dies gleicht den Aufwand für die Produktion der Haftproteine aus. „Diese Bakterienverbände oder Matten sind ein möglicher Ursprung der Vielzelligkeit. Allerdings müssen sie einen Weg finden, sich zu vermehren“, erklärt Paul Rainey, Leiter der Studie.

Zellen, die kein Haftprotein mehr bilden, können sich den Aufwand für die Haftproteine sparen und vom hohen Sauerstoffgehalt profitieren, ohne selbst etwas dazu beizutragen. Sammeln sich aber immer mehr dieser Betrügerzellen an, wird irgendwann zu wenig Klebstoff produziert und die Bakterienmatte löst sich auf. Aus bisherigen Ergebnissen haben Wissenschaftler lange Zeit gefolgert, dass die Evolution solche Betrüger eliminieren muss, die wie Trittbrettfahrer die Kooperationsbereitschaft anderer ausnutzen. Nur dann könnten sich vielzellige Organismen entwickeln.

Den Forschern zufolge ist dies nicht der Fall. Vielmehr fördern die Betrügerzellen die Entwicklung und Ausbreitung der Bakterienmatten. Obwohl sie die Matte zerstören, sind sie gleichzeitig ihr „Retter“. Sie könnten also den Ursprung von Keimzellen und spezialisierten Zellen darstellen – und damit den Ursprung der Fortpflanzung vielzelliger Organismen.

In den Experimenten verglichen die Forscher zwei verschiedene Lebenszyklen, die die Evolution der Bakterienmatten beeinflussten. Im ersten Fall entnahmen sie aus jeder Mattengeneration nur Betrügerzellen und züchteten daraus neue Kolonien. Im zweiten Fall entfernten die Wissenschaftler die Betrügerzellen. „Die Überlebenstauglichkeit der so entstanden Bakterienmatten, also ihre biologische Fitness, wuchs in beiden Fällen – unter der Voraussetzung, dass die Matten miteinander konkurrierten“, erklärt Katrin Hammerschmidt vom New Zealand Institute for Advanced Study.

Die Forscher stellten jedoch fest, dass sich in ihren Experimenten die biologische Fitness der Zellverbände von der der einzelnen Zellen abkoppelt, wenn Betrügerzellen Teil des Lebenszyklus sind: Verbände mit hoher Überlebensfähigkeit bestanden aus Zellen mit relativ gesehen geringer individueller Fitness. „Die Einzelzellen haben in diesen Verbänden also zugunsten der Allgemeinheit auf eigene Vorteile verzichtet. Die so entstandenen Bakterienmatten sind also mehr als ein zufälliger Zusammenschluss vieler Zellen. Sie haben sich vielmehr zu einem vielzelligen Organismus entwickelt, dessen biologische Fitness sich nicht mehr aus der Fitness seiner Einzelzellen ergibt, sagt Rainey.

Solche aus zwei Phasen bestehenden Lebenszyklen sind typisch die meisten heute lebenden vielzelligen Organismen. Möglicherweise sind die Zellen der Keimbahn, Ei- und Samenzellen, im Laufe der Evolution aus solchen egoistischen Betrügerzellen hervorgegangen.


Ansprechpartner

Prof. Dr. Paul Rainey
Max-Planck-Institut für Evolutionsbiologie, Plön

E-Mail: rainey@evolbio.mpg.de


Originalpublikation
Katrin Hammerschmidt, Caroline Rose, Ben Kerr and Paul B. Rainey

Life cycles, fitness decoupling and the evolution of multicellularity

Nature 6. November 2014 (doi:10.1038/nature13884)

Prof. Dr. Paul Rainey | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8739365/Rainey_Evolution_Vielzelligkeit_Betruegerzellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
22.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
22.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics