Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom Blatt bis in die Wurzel: Boten-RNAs legen weite Strecken zurück

24.03.2015

Mit Hilfe bioinformatischer Datenanalysen entdeckt ein internationales Team von Wissenschaftlern tausende mobile Boten-RNAs (mRNAs).

Pflanzen nehmen Wasser und Salze aus dem Boden auf und produzieren mit Hilfe der Photosynthese energiereiche Zucker. Diese verschiedenen Nährstoffe müssen anschließend dorthin transportiert werden, wo sie benötigt werden.


Für die Analyse mobiler mRNAs wurden die Arabidopsis-Ökotypen Columbia und Pedriza in verschiedenen Kombinationen gepfropft. Die weißen Pfeile markieren die Pfropfstellen.

© Max-Planck-Institut für Molekulare Pflanzenphysiologie

Diese Aufgabe übernehmen die Leitbündel. Sie bestehen aus einem Holzteil, dem sogenannten Xylem und aus einem Siebteil, dem Phloem. Wasser und die darin gelösten Salze werden durch das Xylem von der Wurzel in den Spross und die Blätter transportiert. Das Phloem dient dem Transport von Zuckern und anderen organischen Verbindungen.

Diese werden von Blättern in die Wurzeln und in die Blüten und Früchte transportiert um deren Wachstum zu ermöglichen. Neben kleinen organischen Verbindungen werden auch Proteine und sogenannte siRNAs (small interfering RNAs) im Phloem transportiert. „Das sind kleine RNA-Moleküle, die an der Genregulation beteiligt sind. Dazu werden sie teilweise über weite Strecken transportiert, zum Beispiel vom Blatt in die Blüte wo sie die Pollenproduktion regulieren können“, erklärt Friedrich Kragler vom Max-Planck-Institut für Molekulare Pflanzenphysiologie in Potsdam.

Außerdem gab es bereits Hinweise, dass auch größere RNA-Moleküle, wie zum Beispiel Boten-RNAs im Phloem transportiert werden. Diese Boten-RNAs oder auch mRNAs (messenger RNAs) sind an der Übersetzung der genetischen Information in Proteine beteiligt.

„Von den im Phloem gefundenen mRNAs wurden aber bisher nur wenige genauer untersucht. Außerdem war nicht bekannt, in welchem Ausmaß mRNAs zwischen verschiedenen Organen der Pflanze transportiert werden“, sagt Friedrich Kragler. Aus diesem Grund untersuchte das internationale Forscherteam die Mobilität von mRNAs in der Modellpflanze Arabidopsis thaliana (Ackerschmalwand).

Zuerst mussten sie eine Methode entwickeln, die es ihnen ermöglichte bewegliche und unbewegliche mRNA-Moleküle zu unterscheiden. Dazu sollte der Spross einer Pflanze auf den Wurzelhals einer zweiten Pflanze gepfropft werden. So wollten sie untersuchen, ob mRNA Moleküle von der Wurzel in den Spross gelangen und umgekehrt.

„Die Grundlage dieses Experiments war die genetische Vielfalt der verschiedenen Arabidopsis-Ökotypen“, erklärt Wolf-Rüdiger Scheible von der Samuel Roberts Noble Foundation in Ardmore (USA). Als Ökotypen bezeichnet man verschiedene Populationen einer Art, die an unterschiedliche Standorte angepasst sind. Diese Anpassung spiegelt sich auch im Erbgut der Pflanzen wieder. Für ihre Experimente nutzen die Forscher zwei der über 750 Arabidopsis-Ökotypen: Columbia (Col-0) aus dem Mittleren Westen der USA und Pedriza (Ped-0) aus Spanien. Der genetische Unterschied dieser Pflanzen ist groß genug, um mRNA-Moleküle dem entsprechenden Ökotyp zuzuordnen.

Für die Analyse der mRNA-Mobilität wurden Keimlinge in verschiedenen Kombinationen gepfropft. Zwei Wochen später isolierten die Wissenschaftler DNA und RNA aus Blättern und Wurzeln dieser Pflanzen und sequenzierten sie. „Bei der bioinformatischen Analyse der Sequenzdaten konnten wir 2006 Gene identifizieren, die mobile mRNAs produzieren“, erklärt Friedrich Kragler.

„Obwohl die Zahl vermutlich noch höher ist, denn mit unserem Ansatz konnten wir nicht alle mRNAs der beiden Ökotypen erfassen“, fügt Wolf-Rüdiger Scheible hinzu. Ungefähr die Hälfte der identifizierten mobilen mRNAs wird im Phloem, das heißt zusammen mit Zuckern transportiert. Die andere Hälfte unterteilt sich in Moleküle, die von der Wurzel in den Spross wandern (25%) und solche, die in beide Richtungen transportiert werden können (24%).

Die Wissenschaftler vermuten, dass Pflanzen mobile mRNAs als Signalmoleküle nutzen, mit denen sie Wachstumsprozesse sowie Reaktionen auf Umweltreize über weite Strecken koordinieren.

Auch im Wein- und Obstanbau wird das Pfropfen seit mehr als 1000 Jahren als Technik benutzt um Eigenschaften zweier Pflanzen miteinander zu kombinieren. Welche genetischen Faktoren dabei über Erfolg oder Misserfolg entscheiden, ist jedoch häufig unklar. Dabei könnten mobile mRNAs, die zwischen den Wurzeln, Blättern und Früchten ausgetauscht werden, eine wichtige Rolle spielen.

KD

Kontakt

Dr. Friedrich Kragler
Max-Planck-Institut für Molekulare Pflanzenphysiologie
Tel. 0331/567 8120
kragler@mpimp-golm.mpg.de
http://www.mpimp-golm.mpg.de/7889/dep_3

Dr. Kathleen Dahncke
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Molekulare Pflanzenphysiologie
Tel. 0331/567 8275
dahncke@mpimp-golm.mpg.de
http://www.mpimp-golm.mpg.de

Originalpublikation:
Christoph J. Thieme, Monica Rojas-Triana, Ewelina Stecyk, Christian Schudoma, Wenna Zhang, Lei Yang, Miguel Miñambres, Dirk Walther, Waltraud X. Schulze, Javier Paz-Ares, Wolf-Rüdiger Scheible and Friedrich Kragler
Endogenous Arabidopsis messenger RNAs transported to distant tissues
Nature Plants, 23.03.2015, DOI: 10.1038/nplants.2015.25

Weitere Informationen:

http://www.mpimp-golm.mpg.de/6650/3kragler Profil der Arbeitsgruppe Kragler

Ursula Ross-Stitt | Max-Planck-Institut für Molekulare Pflanzenphysiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen