Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Visuelle Neurone ausgetrickst: Neue Einblicke in Rekonstruktion der dritten Dimension im Gehirn

07.12.2011
Eine neu entwickelte optische Täuschung gibt Aufschluss über das Geheimnis der Wiederherstellung der dreidimensionalen Gestalt von Objekten durch das Gehirn

So schwindelerregend es auch klingen mag, der Eindruck, dass wir in einer dreidimensionalen Welt leben, ist in Wirklichkeit ein reines Konstrukt unseres Gehirns.


Eine neue optische Täuschung: Zufallsrauschen (links) nimmt eine dreidimensionale Form an (rechts). Abbildung: Roland Fleming/MPI für biologische Kybernetik

Bei der Betrachtung von Gegenständen werden diese auf die Netzhaut projiziert, wobei die gesamte direkte Information über die dritte Dimension verloren geht – vergleichbar mit dem Schattenwurf eines dreidimensionalen Objekts auf eine flache, zweidimensionale Wand. Nur da das Gehirn die dritte Dimension aus einem Bild wiederherstellen kann, leben wir in einer überzeugend dreidimensionalen Welt.

Eine neue Studie einer Gruppe von Forschern am Max-Planck-Institut für biologische Kybernetik in Tübingen, der Justus-Liebig-Universität Giessen und an der Yale University gibt nun Hinweise darauf, wie Zellen der Sehrinde dazu beitragen können, dieses Geheimnis zu lüften. Die Forscher haben spezielle zweidimensionale Muster entwickelt, die beim Betrachten bestimmte Nervenzellen anregen und dabei einen anschaulichen dreidimensionalen Eindruck hervorrufen. Diese Beobachtungen weisen darauf hin, dass diesen Zellen eine wichtige Rolle bei der Rekonstruktion der dreidimensionalen Gestalt zukommt.

„Für die Erstellung der Abbildungen haben wir Punkte durch Zufallsrauschen generiert und sie entlang bestimmter Muster verwischt. Der Vorgang ähnelt Fingermalerei, nur machen wir es am Computer“, erklärt Roland Fleming, ehemals Projektleiter am Max-Planck-insitut für biologische Kybernetik und jetzt Professor der Psychologie an der JLU Giessen.

„Die Art, wie die Oberflächenstruktur verwischt wird, entspricht nicht dem Prozess der Abbildung der realen, dreidimensionalen Welt. Doch durch diese Verwischungen können wir gezielt die „komplexen Zellen“ der Sehrinde anregen, die die lokale, zweidimensionale Ausrichtung von Mustern in Abbildungen auf der Netzhaut messen.“ Diese Zellen, für deren Entdeckung David Hubel und Torsten Wiesel den Nobelpreis erhielten, werden oft als „Kantendetektoren“ bezeichnet, da sie auf Objektgrenzen oder Kanten in einer Abbildung ansprechen. Bis jetzt war jedoch nicht bekannt, dass sie auch eine Schlüsselrolle bei der Abschätzung der dreidimensionalen Gestalt spielen.

„Um zu dokumentieren, was die Probanden sahen, baten wir sie, kleine Sonden auf den Abbildungen anzupassen. Durch die Einstellungen der Sonden konnten wir genau ablesen, welche dreidimensionalen Formen wahrgenommen wurden”, erklärte Heinrich Bülthoff, Direktor der Abteilung Wahrnehmung, Kognition und Handlung am Max-Planck-Institut für biologische Kybernetik. „Es ist bemerkenswert, wie genau die Ergebnisse mit den Vorhersagen übereinstimmen, die wir anhand unserer Modelle der Zellantwort erstellt haben.”

Der überzeugendste Hinweis darauf, dass diese Zellen eine Rolle spielen, kam den Forschern zufolge von einem Experiment, in dem Probanden 30 Sekunden lang ein Muster anstarrten, um dadurch die Antwort der Zellen zu beeinflussen. Die so hervorgerufene Anpassung der Zellen führte dazu, das Zufallsrauschen, das normalerweise komplett flach wirkt, eine dreidimensionale Form anzunehmen schien. „Es ist eine Art Nachwirkung, vergleichbar mit dem Eindruck, den man erhält, nachdem man zuvor einige Zeit einen Wasserfall betrachtet hat: Plötzlich scheinen sich Dinge, die eigentlich feststehen, in die entgegengesetzte Richtung zu bewegen. Nur erscheint in unserem Fall das Rauschen dreidimensional”, erläutert Daniel Holtmann-Rice, der zur Zeit an der Yale University promoviert. „Wir hatten nicht gedacht, dass es klappen würde. Wir waren begeistert, als wir die ersten Ergebnisse erhielten, in denen unsere vorhergesagten Muster aus den Einstellungen der Probanden auftauchten.“ Als Nächstes wollen die Forscher untersuchen, ob sich ihre Resultate auch auf andere Informationsquellen zur dreidimensionalen Gestalt, wie etwa Schattierung oder Glanzlichter, übertragen lassen.

Originalpublikation:
Fleming, RW, Holtmann-Rice D & HH Bülthoff (in press). Estimation of 3D shape from image orientations. Proc. Nat. Acad. Sci. USA. published ahead of print December 6, 2011, doi:10.1073/pnas.1114619109
Ansprechpartner:
Heinrich Bülthoff
Telefon: +49 7071 601- 601
E-Mail: heinrich.buelthoff@tuebingen.mpg.de
Roland W. Fleming
Universität Gießen
Telefon: +49 641 9926140
E-Mail: roland.w.fleming@psychol.uni-giessen.de

Dagmar Sigurdardottir | Max-Planck-Institut
Weitere Informationen:
http://www.tuebingen.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen
27.06.2017 | Johannes Gutenberg-Universität Mainz

nachricht Glykane als Biomarker für Krebs?
27.06.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie