Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Visuelle Neurone ausgetrickst: Neue Einblicke in Rekonstruktion der dritten Dimension im Gehirn

07.12.2011
Eine neu entwickelte optische Täuschung gibt Aufschluss über das Geheimnis der Wiederherstellung der dreidimensionalen Gestalt von Objekten durch das Gehirn

So schwindelerregend es auch klingen mag, der Eindruck, dass wir in einer dreidimensionalen Welt leben, ist in Wirklichkeit ein reines Konstrukt unseres Gehirns.


Eine neue optische Täuschung: Zufallsrauschen (links) nimmt eine dreidimensionale Form an (rechts). Abbildung: Roland Fleming/MPI für biologische Kybernetik

Bei der Betrachtung von Gegenständen werden diese auf die Netzhaut projiziert, wobei die gesamte direkte Information über die dritte Dimension verloren geht – vergleichbar mit dem Schattenwurf eines dreidimensionalen Objekts auf eine flache, zweidimensionale Wand. Nur da das Gehirn die dritte Dimension aus einem Bild wiederherstellen kann, leben wir in einer überzeugend dreidimensionalen Welt.

Eine neue Studie einer Gruppe von Forschern am Max-Planck-Institut für biologische Kybernetik in Tübingen, der Justus-Liebig-Universität Giessen und an der Yale University gibt nun Hinweise darauf, wie Zellen der Sehrinde dazu beitragen können, dieses Geheimnis zu lüften. Die Forscher haben spezielle zweidimensionale Muster entwickelt, die beim Betrachten bestimmte Nervenzellen anregen und dabei einen anschaulichen dreidimensionalen Eindruck hervorrufen. Diese Beobachtungen weisen darauf hin, dass diesen Zellen eine wichtige Rolle bei der Rekonstruktion der dreidimensionalen Gestalt zukommt.

„Für die Erstellung der Abbildungen haben wir Punkte durch Zufallsrauschen generiert und sie entlang bestimmter Muster verwischt. Der Vorgang ähnelt Fingermalerei, nur machen wir es am Computer“, erklärt Roland Fleming, ehemals Projektleiter am Max-Planck-insitut für biologische Kybernetik und jetzt Professor der Psychologie an der JLU Giessen.

„Die Art, wie die Oberflächenstruktur verwischt wird, entspricht nicht dem Prozess der Abbildung der realen, dreidimensionalen Welt. Doch durch diese Verwischungen können wir gezielt die „komplexen Zellen“ der Sehrinde anregen, die die lokale, zweidimensionale Ausrichtung von Mustern in Abbildungen auf der Netzhaut messen.“ Diese Zellen, für deren Entdeckung David Hubel und Torsten Wiesel den Nobelpreis erhielten, werden oft als „Kantendetektoren“ bezeichnet, da sie auf Objektgrenzen oder Kanten in einer Abbildung ansprechen. Bis jetzt war jedoch nicht bekannt, dass sie auch eine Schlüsselrolle bei der Abschätzung der dreidimensionalen Gestalt spielen.

„Um zu dokumentieren, was die Probanden sahen, baten wir sie, kleine Sonden auf den Abbildungen anzupassen. Durch die Einstellungen der Sonden konnten wir genau ablesen, welche dreidimensionalen Formen wahrgenommen wurden”, erklärte Heinrich Bülthoff, Direktor der Abteilung Wahrnehmung, Kognition und Handlung am Max-Planck-Institut für biologische Kybernetik. „Es ist bemerkenswert, wie genau die Ergebnisse mit den Vorhersagen übereinstimmen, die wir anhand unserer Modelle der Zellantwort erstellt haben.”

Der überzeugendste Hinweis darauf, dass diese Zellen eine Rolle spielen, kam den Forschern zufolge von einem Experiment, in dem Probanden 30 Sekunden lang ein Muster anstarrten, um dadurch die Antwort der Zellen zu beeinflussen. Die so hervorgerufene Anpassung der Zellen führte dazu, das Zufallsrauschen, das normalerweise komplett flach wirkt, eine dreidimensionale Form anzunehmen schien. „Es ist eine Art Nachwirkung, vergleichbar mit dem Eindruck, den man erhält, nachdem man zuvor einige Zeit einen Wasserfall betrachtet hat: Plötzlich scheinen sich Dinge, die eigentlich feststehen, in die entgegengesetzte Richtung zu bewegen. Nur erscheint in unserem Fall das Rauschen dreidimensional”, erläutert Daniel Holtmann-Rice, der zur Zeit an der Yale University promoviert. „Wir hatten nicht gedacht, dass es klappen würde. Wir waren begeistert, als wir die ersten Ergebnisse erhielten, in denen unsere vorhergesagten Muster aus den Einstellungen der Probanden auftauchten.“ Als Nächstes wollen die Forscher untersuchen, ob sich ihre Resultate auch auf andere Informationsquellen zur dreidimensionalen Gestalt, wie etwa Schattierung oder Glanzlichter, übertragen lassen.

Originalpublikation:
Fleming, RW, Holtmann-Rice D & HH Bülthoff (in press). Estimation of 3D shape from image orientations. Proc. Nat. Acad. Sci. USA. published ahead of print December 6, 2011, doi:10.1073/pnas.1114619109
Ansprechpartner:
Heinrich Bülthoff
Telefon: +49 7071 601- 601
E-Mail: heinrich.buelthoff@tuebingen.mpg.de
Roland W. Fleming
Universität Gießen
Telefon: +49 641 9926140
E-Mail: roland.w.fleming@psychol.uni-giessen.de

Dagmar Sigurdardottir | Max-Planck-Institut
Weitere Informationen:
http://www.tuebingen.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf dem Weg zu künstlichem Gewebe- und Organersatz aus dem 3D-Drucker
18.08.2017 | Ernst-Abbe-Hochschule Jena

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten