Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Visuelle Neurone ausgetrickst: Neue Einblicke in Rekonstruktion der dritten Dimension im Gehirn

07.12.2011
Eine neu entwickelte optische Täuschung gibt Aufschluss über das Geheimnis der Wiederherstellung der dreidimensionalen Gestalt von Objekten durch das Gehirn

So schwindelerregend es auch klingen mag, der Eindruck, dass wir in einer dreidimensionalen Welt leben, ist in Wirklichkeit ein reines Konstrukt unseres Gehirns.


Eine neue optische Täuschung: Zufallsrauschen (links) nimmt eine dreidimensionale Form an (rechts). Abbildung: Roland Fleming/MPI für biologische Kybernetik

Bei der Betrachtung von Gegenständen werden diese auf die Netzhaut projiziert, wobei die gesamte direkte Information über die dritte Dimension verloren geht – vergleichbar mit dem Schattenwurf eines dreidimensionalen Objekts auf eine flache, zweidimensionale Wand. Nur da das Gehirn die dritte Dimension aus einem Bild wiederherstellen kann, leben wir in einer überzeugend dreidimensionalen Welt.

Eine neue Studie einer Gruppe von Forschern am Max-Planck-Institut für biologische Kybernetik in Tübingen, der Justus-Liebig-Universität Giessen und an der Yale University gibt nun Hinweise darauf, wie Zellen der Sehrinde dazu beitragen können, dieses Geheimnis zu lüften. Die Forscher haben spezielle zweidimensionale Muster entwickelt, die beim Betrachten bestimmte Nervenzellen anregen und dabei einen anschaulichen dreidimensionalen Eindruck hervorrufen. Diese Beobachtungen weisen darauf hin, dass diesen Zellen eine wichtige Rolle bei der Rekonstruktion der dreidimensionalen Gestalt zukommt.

„Für die Erstellung der Abbildungen haben wir Punkte durch Zufallsrauschen generiert und sie entlang bestimmter Muster verwischt. Der Vorgang ähnelt Fingermalerei, nur machen wir es am Computer“, erklärt Roland Fleming, ehemals Projektleiter am Max-Planck-insitut für biologische Kybernetik und jetzt Professor der Psychologie an der JLU Giessen.

„Die Art, wie die Oberflächenstruktur verwischt wird, entspricht nicht dem Prozess der Abbildung der realen, dreidimensionalen Welt. Doch durch diese Verwischungen können wir gezielt die „komplexen Zellen“ der Sehrinde anregen, die die lokale, zweidimensionale Ausrichtung von Mustern in Abbildungen auf der Netzhaut messen.“ Diese Zellen, für deren Entdeckung David Hubel und Torsten Wiesel den Nobelpreis erhielten, werden oft als „Kantendetektoren“ bezeichnet, da sie auf Objektgrenzen oder Kanten in einer Abbildung ansprechen. Bis jetzt war jedoch nicht bekannt, dass sie auch eine Schlüsselrolle bei der Abschätzung der dreidimensionalen Gestalt spielen.

„Um zu dokumentieren, was die Probanden sahen, baten wir sie, kleine Sonden auf den Abbildungen anzupassen. Durch die Einstellungen der Sonden konnten wir genau ablesen, welche dreidimensionalen Formen wahrgenommen wurden”, erklärte Heinrich Bülthoff, Direktor der Abteilung Wahrnehmung, Kognition und Handlung am Max-Planck-Institut für biologische Kybernetik. „Es ist bemerkenswert, wie genau die Ergebnisse mit den Vorhersagen übereinstimmen, die wir anhand unserer Modelle der Zellantwort erstellt haben.”

Der überzeugendste Hinweis darauf, dass diese Zellen eine Rolle spielen, kam den Forschern zufolge von einem Experiment, in dem Probanden 30 Sekunden lang ein Muster anstarrten, um dadurch die Antwort der Zellen zu beeinflussen. Die so hervorgerufene Anpassung der Zellen führte dazu, das Zufallsrauschen, das normalerweise komplett flach wirkt, eine dreidimensionale Form anzunehmen schien. „Es ist eine Art Nachwirkung, vergleichbar mit dem Eindruck, den man erhält, nachdem man zuvor einige Zeit einen Wasserfall betrachtet hat: Plötzlich scheinen sich Dinge, die eigentlich feststehen, in die entgegengesetzte Richtung zu bewegen. Nur erscheint in unserem Fall das Rauschen dreidimensional”, erläutert Daniel Holtmann-Rice, der zur Zeit an der Yale University promoviert. „Wir hatten nicht gedacht, dass es klappen würde. Wir waren begeistert, als wir die ersten Ergebnisse erhielten, in denen unsere vorhergesagten Muster aus den Einstellungen der Probanden auftauchten.“ Als Nächstes wollen die Forscher untersuchen, ob sich ihre Resultate auch auf andere Informationsquellen zur dreidimensionalen Gestalt, wie etwa Schattierung oder Glanzlichter, übertragen lassen.

Originalpublikation:
Fleming, RW, Holtmann-Rice D & HH Bülthoff (in press). Estimation of 3D shape from image orientations. Proc. Nat. Acad. Sci. USA. published ahead of print December 6, 2011, doi:10.1073/pnas.1114619109
Ansprechpartner:
Heinrich Bülthoff
Telefon: +49 7071 601- 601
E-Mail: heinrich.buelthoff@tuebingen.mpg.de
Roland W. Fleming
Universität Gießen
Telefon: +49 641 9926140
E-Mail: roland.w.fleming@psychol.uni-giessen.de

Dagmar Sigurdardottir | Max-Planck-Institut
Weitere Informationen:
http://www.tuebingen.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics