Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Viren machen Verschaltungen von Nervenzellen sichtbar

09.11.2012
Max-Planck-Forscher lassen neuronale Verbindungen im intakten Gehirn fluoreszieren

Wie verlaufen die Nervenbahnen im Gehirn? Mit welchen anderen Nervenzellen tauschen Neuronen Informationen aus?


Unter dem Fluoreszenzmikroskop wird sichtbar, wo die Nervenzellen ihren Ursprung haben, die über eine Synapse mit den Körnerzellen im Riechkolben der Maus verschaltet sind: Die meisten der grün leuchtenden Zellen gehen vom diagonalen Broca-Band aus, ein kleinerer Teil entstammt dem piriformen Kortex.

© Martin Schwarz / Max-Planck-Institut für medizinische Forschung

Diese Fragen versuchen Neurowissenschaftler sowohl mithilfe von Tiermodellen als auch an Hirnpräparaten zu beantworten. Martin Schwarz und seine Kollegen vom Max-Planck-Institut für medizinische Forschung in Heidelberg beschreiten dafür einen neuen Weg: Sie nutzen Viren als Genfähren und bringen damit die Bauanleitung für fluoreszierende Proteine in ausgewählte Hirnbereiche, beispielsweise in den Riechkolben einer Maus.

Später können die Wissenschaftler in den intakten Hirnpräparaten nicht nur die Zellen identifizieren, die sie ursprünglich mit den Viren infiziert haben. Durch einen speziellen Trick bringen sie auch die Neuronen zum Leuchten, die mit diesen direkt verschaltet sind.

Projektionsneurone sind Nervenzellen, die mithilfe ihrer langen Axonen zwei entfernte Hirnzentren miteinander verbinden. Dies macht sie besonders interessant – und besonders schwer zu untersuchen: Denn wenn Wissenschaftler sich den Feinaufbau des Denkorgans anschauen wollen, tun sie dies häufig mit dem Mikroskop. Hierfür müssen sie die Hirnpräparate aber in dünne Scheiben schneiden, was ein Finden und Zuordnen der Gesamtheit dieser Projektionsneurone nahezu unmöglich macht. Die Gruppe um Martin Schwarz vom Max-Planck-Institut für medizinische Forschung in Heidelberg hat jetzt eine Methode entwickelt, mit deren Hilfe es den Forschern erstmals gelungen ist, alle monosynaptischen neuronalen Verbindungen einer Hirnregion im intakten Gehirn sichtbar zu machen.

Die Forscher infizierten zuerst Nervenzellen – die sogenannten Körnerzellen – im Riechkolben von Mäusen gleichzeitig mit drei verschiedenen Viren. Die Viren transportieren eine Reihe fremder Gene in die Zellen, die sie damit zum Leuchten bringen. Das Gen für einen grünen Farbstoff gelangt über ein modifiziertes Tollwutvirus in die Nervenzellen. Dieses Virus kann aber nur Zellen befallen, die einen bestimmten Rezeptor auf ihrer Oberfläche besitzen. Um die Zielzellen dazu zu bringen, den Rezeptor zu produzieren, schleusten die Wissenschaftler das entsprechende Gen über ein zweites Virus ein. Dieses hatte zusätzlich ein Gen für einen weiteren, roten Farbstoff im Gepäck. Mit einem dritten Virus kam darüber hinaus ein Gen für ein spezielles Virusprotein in die Neuronen. Dessen Produkt versetzt das modifizierte Tollwutvirus in die Lage, sich im Nervensystem über Synapsen hinweg zu bewegen, von dieser postsynaptischen in präsynaptische Zellen.

Um nun die Gehirne zur Erkennung der Farbmarker in mikroskopischen Untersuchungen transparent zu machen, wurden die infizierten Gehirne mit einer Chemikalie behandelt, die dem Gewebe das Wasser entzieht. Nervenzellen, die mit allen drei Viren infiziert waren leuchteten wie erwartet gelb: Sie stellen also sowohl den grünen als auch den roten Farbstoff her. Mit ihnen verbundene präsynaptische Neurone konnten die Wissenschaftler an ihrer grünen Farbe erkennen. Sie verfolgten den Ursprung dieser Zellen und bemerkten, dass mit etwa 60 Prozent der Großteil der präsynaptischen Neurone von einer Region im Hypothalamus ausging, dem diagonalen Broca-Band. „Das war eine große Überraschung, denn bisher war bekannt, dass nur etwa 16 Prozent der Nervenzellen, die mit Körnerzellen verknüpft sind, ihren Ursprung in dieser Hirnregion haben“, sagt Martin Schwarz, der die Studie leitete. Welche Bedeutung diese Erkenntnis hat, untersucht das Team derzeit in einer Folgestudie. Die übrigen 40 Prozent der präsynaptischen Neuronen verfolgten die Wissenschaftler zurück zum piriformen Kortex, einer Region der Hirnrinde, die Geruchsinformationen verarbeitet. Eigentlich hatten Schwarz und sein Team damit gerechnet, hier den Großteil der mit dem Riechkolben vernetzten Nervenzellen zu finden.

Wie die Forscher zeigten, sind in einer derartigen Gehirnpräparation noch weitere Untersuchungen möglich: So „wässerten“ sie die transparenten Gehirne, schnitten sie in dünne Scheiben und behandelten sie mit einem farbmarkierten Antikörper gegen den Neurotransmitter Acetylcholin, um cholinerge Nervenzellen mit roter Fluoreszenz zu versehen.

Martin Schwarz sieht einen großen Vorteil darin, die neue, virengestützten Methode zur Fluoreszenzmarkierung mit der konventionellen immunohistochemischen Färbung zu kombinieren: „So können wir die exakte Identität der miteinander verbundenen Nervenzellen bestimmen“, sagt Martin Schwarz.

Eine weiterführende Anwendungsmöglichkeit der neuen Technik sehen die Wissenschaftler in der Erforschung neuronaler Krankheiten wie der Epilepsie. So wollen sie untersuchen, wie sich die Verschaltungen im Gehirn von epileptischen Tieren ändern. Dadurch versprechen sie sich ein verbessertes Verständnis dafür, wie sich die Neuronen bei einem solchen Anfall neu organisieren.

Ansprechpartner
Dr. Martin Schwarz
Max-Planck-Institut für medizinische Forschung, Heidelberg
Telefon: +49 6221 486-130
Email: Martin.Schwarz@­mpimf-heidelberg.mpg.de
Dr. John Wray
Max-Planck-Institut für medizinische Forschung, Heidelberg
Telefon: +49 6221 486-277
Fax: +49 6221 486-351
Email: wray@­mpimf-heidelberg.mpg.de

Originalpublikation
Christian J. Niedworok, Inna Schwarz, Julia Ledderose, Günter Giese, Karl-Klaus Conzelmann und Martin Schwarz
Charting Monosynaptic Connectivity Maps by Two-Color Light-Sheet Fluorescence Microscopy

Cell Reports (2012)

Dr. Martin Schwarz | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/6614551/Fluoreszierendes_Mausgehirn

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stammzellschalter auf Wanderschaft
29.05.2015 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Ungenießbare Beute - Chemisches Abschreckungsmittel des Schneeflohs identifiziert
29.05.2015 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Galapagos-Vulkanismus: Überraschend explosiv

Internationales Vulkanologen-Team präsentiert neue Erkenntnisse zur Eruptions-Geschichte

Vor 8 bis 16 Millionen Jahren gab es im Gebiet der heutigen Galapagos-Inseln einen hochexplosiven Vulkanismus. Das zeigt erstmals die Auswertung von...

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Wie Solarzellen helfen, Knochenbrüche zu finden

FAU-Forscher verwenden neues Material für Röntgendetektoren

Nicht um Sonnenlicht geht es ihnen, sondern um Röntgenstrahlen: Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben zusammen mit...

Im Focus: Festkörper-Photonik ermöglicht extrem kurzwellige UV-Strahlung

Mit ultrakurzen Laserpulsen haben Wissenschaftler aus dem Labor für Attosekundenphysik in dünnen dielektrischen Schichten EUV-Strahlung erzeugt und die zugrunde liegenden Mechanismen untersucht.

Das Jahr 1961, die Erfindung des Lasers lag erst kurz zurück, markierte den Beginn der nichtlinearen Optik und Photonik. Denn erstmals war es Wissenschaftlern...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Potenzial aller Kinder erkennen

29.05.2015 | Veranstaltungen

Cannabis – eine andauernde Kontroverse

29.05.2015 | Veranstaltungen

Frauen können nicht alles haben - Männer aber schon?!

29.05.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mikhael Subotzky und Patrick Waterhouse erhalten den Deutsche Börse Photography Prize 2015

29.05.2015 | Förderungen Preise

Potenzial aller Kinder erkennen

29.05.2015 | Veranstaltungsnachrichten

HDT - Sommerakademie 2015 für Entwickler und Ingenieure

29.05.2015 | Seminare Workshops