Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Viren in der Zange

11.08.2014

Unser immunsensorisches System erkennt beispielsweise Grippe-Viren an spezifischen Merkmalen der viralen Ribonukleinsäure. Bislang war unklar, wie das Abwehrsystem verhindert, dass Viren nicht einfach eine molekulare Tarnkappe aufsetzen, um sich der Erkennung zu entziehen.

Ein internationales Team aus Forschern des Universitätsklinikums Bonn und des London Research Institutes hat nun herausgefunden, dass unser immunsensorisches System Viren in eine molekulare Zange nimmt. Dadurch kann ein gesunder Organismus beispielsweise Rotaviren als Erreger für Durchfall-Epidemien in Schach halten. Die Ergebnisse werden im renommierten Fachjournal „Nature“ vorgestellt.


Marion Goldeck, Dr. Martin Schlee (sitzend), Dr. Winfried Barchet, Thomas Zillinger und Direktor Prof. Dr. Gunther Hartmann vom Institut für Klinische Chemie und Klinische Pharmakologie.

(c) Foto: Claudia Siebenhüner/UKB

Das Immunsystem ist täglich mit einer Vielzahl von Viren konfrontiert. Permanent muss dieses Bollwerk zwischen „fremd“ und „eigen“ unterscheiden, damit nicht versehentlich die körpereigenen Zellen von den eigenen Abwehrtruppen angegriffen werden. Da Viren körpereigene Strukturen imitieren, stellt dies eine besondere Herausforderung für das Immunsystem dar.

Es funktioniert dabei wie ein Sinnesorgan, das ständig Gefahren aufspürt und die passenden Abwehrmechanismen in Gang setzt. Dieses immunsensorische System fahndet nach Viren, indem es die körpereigenen Ribonukleinsäuren (RNA) nach RNA mit virustypischen Merkmalen durchforstet. Bei RNA-Viren ist die RNA Träger der genetischen Information des Virus. Zur Vermehrung müssen Viren ihre RNA vervielfältigen, und dabei entstehen molekulare Muster, die unser Abwehrsystem für die Detektion von Viren nutzt.

Seit längerem ist bekannt, dass RIG-I-like Rezeptoren (RLRs) bei der Detektion von RNA-Viren eine entscheidende Rolle spielen. Sie sind so etwas wie die Feuermelder des Immunsystems: Wenn RNA von Viren an diese Rezeptoren bindet, wird eine Signalkette in Gang gesetzt. Sie mündet in die Produktion von Substanzen, die die Viren schließlich bekämpfen.

„Bei der Vervielfältigung von viraler RNA entsteht zwangsläufig eine aus drei Phosphaten bestehende, sogenannte Triphosphat-Gruppe an einem Ende der neu gebildeten RNA. „Vor wenigen Jahren konnten wir als erste zeigen, dass es diese Triphosphat-Gruppe ist, über die RIG-I neu-gebildete virale RNA erkennt. Bislang glaubte man, dass Viren sich dieser Erkennung über einfache molekulare Täuschungsmanöver entziehen können“, sagt Prof. Gunther Hartmann, Direktor des Instituts für Klinische Chemie und Klinische Pharmakologie des Universitätsklinikums Bonn.

RIG-I: Molekulare Zange gegen Viren

Gemeinsam mit Wissenschaftlern vom Immunbiologischen Labor des London Research Institutes in England untersuchten die Wissenschaftler um Dr. Martin Schlee und Prof. Dr. Gunther Hartmann am Bonner Universitätsklinikum die Immunerkennung von Reoviren. Zu dieser Familie gehören unter anderem Rotaviren, Verursacher von schweren Durchfallerkrankungen, an denen jährlich weltweit mehr als eine Million Kinder sterben.

Die Immunerkennung von Reoviren war bislang unklar, da deren RNA über keine Triphosphatgruppe verfügt. Nun entdeckten die Forscher, dass überraschenderweise eine RNA-Struktur mit zwei Phosphaten am Ende des RNA-Doppelstrangs bei Reoviren ebenso den Alarmmechanismus des Abwehrsystems in Gang setzt.

„Dieser Befund hat eine weit über Reoviren hinausreichende Bedeutung für die Erkennung von RNA-Viren: Es ist für ein Virus vergleichsweise einfach, das Triphosphat nach seiner zwangsläufigen Entstehung molekular zu verändern“, sagt Dr. Schlee. Der erste Schritt ist dabei in der Regel die Abspaltung des äußersten Phosphats der Triphosphat-Gruppe, die zum Diphosphat führt.

Erst dann können Viren eine molekulare Tarnkappe aufsetzen. Über die zusätzliche RIG-I-vermittelte hochspezialisierte Immunerkennung des Diphosphats ist dem Virus jede Form der molekularen Tarnung extrem erschwert. RIG-I nimmt Viren damit von zwei Seiten in eine molekulare Zange, und engt damit die Entstehung von weiteren krankmachenden Viren stark ein. „Ohne die Untersuchung von Reoviren wären wir nicht auf diesen allgemeingültigen Mechanismus der Viruserkennung gekommen“, sagt Prof. Hartmann.

Die Vertreter der Familie der Reoviren tragen nämlich als Besonderheit eine solche Diphosphat-Gruppe in ihrer viralen RNA. Daher kann ein gesunder Organismus diese Viren auch erkennen und diese Erkrankungen innerhalb weniger Tage eindämmen. Mangelernährte Kinder können diese Reserven jedoch nicht aufbringen und sind lebensgefährlich bedroht.

Das Immunsystem: ein Sinnessystem der Gesundheit

Die Forscher sehen in der Entschlüsselung der Virus-Erkennung ein großes Anwendungspotenzial: „Wir entwickeln aktuell bereits künstlich hergestellte Imitate der Virus-RNA, um unser Immunsystem gezielt in Alarmbereitschaft gegen Viren zu versetzen“, sagt Prof. Hartmann, der auch als Projektleiter im Deutschen Zentrum für Intfektionsforschung (DZIF) im Schwerpunkt „Neuartige Antiinfektiva“ aktiv ist. Prof. Hartmann ist Sprecher des von der Deutschen Forschungsgemeinschaft mit 28 Millionen Euro geförderten Exzellenzclusters ImmunoSensation. Es bündelt die Expertise verschiedener Disziplinen am Standort und knüpft diese an internationale Forschungsstrukturen.

Publikation: Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5’diphosphates, Fachjournal “Nature”, DOI: 10.1038/nature13590

Kontakt:

Prof. Dr. med. Gunther Hartmann
Direktor des Instituts für Klinische Chemie
und Klinische Pharmakologie
des Universitätsklinikums Bonn
Tel. 0228/28716080
E-Mail: Gunther.Hartmann@ukb.uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aufschlussreiche Partikeltrennungen
20.07.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Bildgebung von entstehendem Narbengewebe
20.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie