Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

22.05.2018

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies erreicht, indem sie die genetische Information zur Herstellung von Bakterienproteinen – so genannten Enkapsuline - in menschliche Zellen einbrachten.


Modifziertes Cryo-Elektronenmikroskopbild von genetisch programmierten molekularen Werkstätten in lebendigen Zellen.

Bild: P. Erdmann / Max-Planck-Institut für Biochemie

Diese Proteine können sich selbständig zu Nanokugeln zusammenbauen. Die Forscherinnen und Forscher waren so in der Lage, kleine abgeschlossene Räume, künstliche Zellkompartimente, im Zellinneren zu erzeugen.

Geschütze Räume mit neuen Eigenschaften

Die große Stärke der kleinen Kugeln: sie sind für die Zelle ungiftig und in ihrem Inneren können eigene Reaktionen ablaufen, ohne den Stoffwechsel der Zelle zu stören. „Ein entscheidender Vorteil des Systems ist, dass wir genetisch kontrollieren können, welche Proteine, zum Beispiel Fluoreszenzproteine oder Enzyme, in das Innere der Nanokugeln eingebaut werden.“, so Felix Sigmund, Erstautor der Studie. „So können wir mehrschrittige Prozesse räumlich abtrennen und den Zellen neue Eigenschaften geben.“

Doch die Nanokugeln besitzen auch eine natürliche Eigenschaft, die für das Team um Westmeyer besonders interessant ist: sie können Eisenmoleküle aufnehmen und so verarbeiten, dass sie in ihrem Inneren bleiben und die Prozesse der Zelle nicht stören. Die Kugeln und auch die Zellen werden dadurch magnetisch.

„Eines unserer Langzeitforschungsziele ist es, Zellen unter genetischer Kontrolle magnetisch zu machen. So werden sie sichtbar und kontrollierbar. Die neuen Nanokompartimente bringen uns hier einen großen Schritt weiter.“ erklärt Westmeyer.

Magnetisch, praktisch, gut

Vor allem die Beobachtung der Zellen mit unterschiedlichen bildgebenden Verfahren wird so leichter: Magnetische Zellen lassen sich auch in tiefen Schichten mit Techniken beobachten, bei denen das Gewebe nicht beschädigt wird, wie zum Beispiel der Magnetresonanzbildgebung (MRT). Zudem konnte das Team in Zusammenarbeit mit Dr. Philipp Erdmann und Prof. Jürgen Plitzko vom Max-Planck Institut für Biochemie zeigen, dass die Nanokugeln auch im hochauflösenden Cryoelektronenmikroskop sichtbar sind.

Als sogenannten „Genreporter“ können sie so die Identität oder den Zustand von Zellen direkt unter dem Elektronenmikroskop anzeigen. Mit Hilfe von Fluorenzenzproteinen ist das in der Lichtmikroskopie schon lange möglich. Und es gibt noch weitere Vorteile: Zellen, die magnetisch sind, können mit Hilfe von magnetischen Feldern gezielt gelenkt und somit sortiert und von anderen Zellen getrennt werden.

Einsatz bei Zelltherapie denkbar

Ein mögliches zukünftiges Einsatzgebiet der künstlichen Zellkompartimente wäre zum Beispiel die Immunozelltherapie. Dabei werden Immunzellen genetisch so verändert, dass sie Krebszellen des Patienten gezielt zerstören können. Mit Hilfe der neuen Nanokompartimente in ihrem Inneren, könnten die manipulierten Zellen mit bildgebenden Verfahren leichter im Körper auffindbar sein.

„Mit den modular bestückbaren Nanokugeln könnten wir den Immunzellen eventuell auch noch neue Stoffwechselwege geben, die sie effizienter und robuster machen.“ erklärt Westmeyer und ergänzt: „Dies ist natürlich noch Zukunftsmusik und es gibt hier noch vielen Hürden in präklinischen Modellen zu überwinden. Aber die neue Fähigkeit, kleine abgetrennte Reaktionsgefäße in Säugetierzellen genetisch zu kontrollieren, könnte für diese Ansätze sehr hilfreich sein."

Publikation:
Sigmund et al.: „Bacterial encapsulins as orthogonal compartments for mammalian cell engineering“, Nature Communications, DOI: 10.1038/s41467-018-04227-3
https://www.nature.com/articles/s41467-018-04227-3

Mehr Informationen:

Prof. Gil Gregor Westmeyer ist Mitglied der Munich School of Bioengineering. Die Studie wurde gefördert durch den ERC Starting Grant „MagnetoGenetics“.

Munich School of Bioengineering
https://www.bioengineering.tum.de/

Professorenprofil von Gil Gregor Westmeyer
http://www.professoren.tum.de/westmeyer-gil/

Webseite der Forschungsgruppe "Cell-Circuit-Control"
https://www.helmholtz-muenchen.de/ibmi/laboratories/cell-circuit-control/index.h...

Kontakt:
Prof. Dr. Gil Gregor Westmeyer
Technische Universität München
Professor für Molekulare Bildgebung
Tel.: +49 (0) 89 3187-2123
gil.westmeyer@tum.de

Weitere Informationen:

https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/detail/article/34644/ - Diese Pressemeldung im Web
https://www.tum.de/die-tum/aktuelles/ - alle Pressemeldungen der Technischen Universität München

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Das Geheimnis der Sojabohne: Mainzer Forscher untersuchen Ölkörperchen in Sojabohnen
20.06.2018 | Max-Planck-Institut für Polymerforschung

nachricht Schlüsselmolekül des Alterns entdeckt
20.06.2018 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Breitbandservices von DNS:NET erweitert

20.06.2018 | Unternehmensmeldung

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics