Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie viele Finger hat die Hand?

16.12.2008
Berliner Wissenschaftler beschreiben molekularen Mechanismus der Entstehung der Vielfingrigkeit

Hände schütteln, Händchenhalten, Handauflegen - für viele kulturelle Verhaltensweisen und Ausdrucksformen ist die Hand unerläßlich. Wie diese aussehen muss, ist auch jedem klar. Schon kleine Kinder wissen, dass fünf Finger das Wichtigste einer jeden Hand sind. In einigen Fällen können jedoch sechs oder mehr Finger vorkommen. Einzelne Finger können nach ihrer Entstehung wieder miteinander verwachsen, Mediziner sprechen in diesen Fällen von Synpolydaktylien. Forschern des Berliner Max-Planck-Instituts für molekulare Genetik und der Charité - Universitätsmedizin Berlin ist es jetzt gelungen, die molekularen Mechanismen bei der Entstehung solcher Synpolydaktylien aufzuklären. In der renommierten Fachzeitschrift "Journal of Clinical Investigation" beschreiben die Wissenschaftler um Stefan Mundlos, dass die zusätzlichen Finger durch unkontrollierte Knorpelbildung entstehen, die durch einen Mangel an Retinsäure in den betreffenden Regionen der Extremitätenknospe hervorgerufen wird. (Kuss et al., J. Clin. Invest. 119(1), 2009, doi: 10.1172/JCI36851, advance online publication December 15, 2008)


3D Modell zum Mechanismus der Synpolydaktylie: Die Abbildung zeigt 3D-Modelle von sich entwickelnden Fingern bei zwei Wochen alten Mausembryonen. Im gesunden Wildtyp (wt) sind die knorpeligen Fingeranlagen deutlich erkennbar. Im Modell der Maus, die die untersuchte Genveränderung aufweist (spdh-Mutante), entsteht zusätzlicher Knorpel in den Fingerzwischenräumen. Dieser verschmilzt teilweise mit den Anlagen der Finger (Pfeile). Bild: MPI für molekulare Genetik, FG Development & Disease

Seit längerem ist bekannt, dass die Synpolydaktylie durch eine Mutation des sogenannten Hoxd13-Gens ausgelöst wird. Hox-Gene sind eine hoch konservierte Gruppe von Genen, die für die Steuerung weiterer, nachgeschalteter Gene verantwortlich sind. Während der Embryonalentwicklung spielen sie eine wichtige Rolle bei der Anlage der verschiedenen Körperachsen und der Extremitäten. Das Hoxd13-Gen besitzt im Normalfall eine Region, in der 15mal hintereinander die Sequenz für die Aminosäure Alanin vorkommt. Bei Patienten mit Synpolydaktylie ist diese Reihe um mindestens sieben weitere Alanine verlängert. Die Fehlbildung wird um so schwerwiegender, je höher der Anzahl an wiederholten Alaninen ist. Der Erbgang der Synpolydaktylie ist dominant, d.h., für die Entstehung genügt es, wenn nur eine Kopie des Gens (von Mutter oder Vater) verändert ist. Das Krankheitsbild wird allerdings noch schwerer, wenn beide Elternteile das mutierte Gen tragen.

Ziel der Berliner Wissenschaftler war die Aufklärung der Mechanismen, die zur Entstehung der überzähligen Finger und dem anschließenden Verwachsen führen. Dafür untersuchten die Forscher Mäuse, die aufgrund einer Genveränderung sechs oder mehr Finger haben. Dabei entsprach die Genveränderung der Tiere der Veränderung des menschlichen Erbgutes bei Synpolydaktylie.

Die Wissenschaftler konnten zeigen, dass zwei verschiedene Mechanismen für die Entstehung des Krankheitsbildes verantwortlich sind. Zum einen aktiviert Hoxd13 das Enzym Raldh2, welches im Bereich der späteren Hand Vitamin A zu Retinsäure umwandelt. Retinsäure verhindert im Bereich der Fingerzwischenräume, dass sich embryonale Vorläuferzellen zu Knorpelzellen umwandeln. Im Gegensatz hierzu finden sich in den Bereichen, in denen die Finger entstehen, kein Hoxd13 und somit keine Retinsäure. Entsprechend können sich hier Knorpelzellen bilden, die im Laufe der weiteren Entwicklung zu Fingern werden. Das veränderte Hoxd13 ist deutlich weniger wirksam als die normale Form. Dadurch entsteht zu wenig Retinsäure im Bereich der späteren Hand, entsprechend wandeln sich mehr Vorläuferzellen in Knorpelzellen um und die Anzahl an Fingern steigt an. Daneben signalisiert die veränderte Form von Hoxd13 den Vorläuferzellen aber auch selber, dass sie sich zu Knorpelzellen umwandeln sollen. Dies verstärkt die Knorpelbildung an falscher Stelle noch weiter. Um den Mangel an Retinsäure zu beheben verabreichten die Forscher trächtigen Mäusen mit der entsprechenden Genveränderung Retinsäure. Daraufhin wurden Nachkommen geboren, die wieder die normale Zahl von fünf Fingern hatten.

"Bisher gingen Wissenschaftler davon aus, dass die Bildung zusätzlicher Finger durch die Verdopplung bereits existierender Fingeranlagen entsteht, also bereits vorhandene Finger dupliziert werden", erläutert Stefan Mundlos, Leiter der Gruppe, die die Untersuchungen durchgeführt hat. "Wir konnten jedoch beweisen, dass die Synpolydaktylien durch Differenzierungsdefekte entstehen. Das bedeutet, dass völlig neue Finger gebildet werden, die keinem der normalerweise vorkommenden Finger entsprechen."

Originalveröffentlichung:
Kuss, P., Villavecencio-Lorini, P., Witte, F., Klose, J., Albrecht, A.N., Seemann, P., Hecht, J., Mundlos, S. Mutant Hoxd13 induces extra digits in a mouse model of synpolydactyly directly and by decreasing retinoic acid synthesis. Journal of Clinical Investigation 119(1), January 2009, doi: 10.1172/JCI36851, advance online publication December 15, 2008

Kontakt (Pressestelle):

Dr. Patricia Marquardt
Max-Planck-Institut
für molekulare Genetik
Ihnestr. 63-73
14195 Berlin
Tel.: +49 30 8413-1716
Fax: +49 30 8413-1671
Email: patricia.marquardt@molgen.mpg.de

Dr. Patricia Marquardt | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.molgen.mpg.de/research/mundlos/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie