Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Viable and fertile fruit flies in the absence of histone H3.3

13.11.2012
Histones – proteins that package DNA – affect cell function differently than previously assumed: the cell doesn’t need the histone H3.3 to read genes. Molecular biologists from the University of Zurich demonstrate that fruit flies can develop and reproduce in the absence of this histone. Additionally, cell division works without a histone modification previously deemed crucial.

Histones are proteins that are found in the cell’s nucleus, where they are present in complexes with DNA and are presumed to play a regulatory role in all processes that take place on the DNA. These processes include transcription, namely RNA synthesis, and the duplication of DNA during cell division.


Drosophila wing imaginal disc: Non-stained cells, areas in black, can not modify their histone H3 at the lysin. But the cells can divide and read genes. Dark blue represents non-mutant cells, cyan represents the modification at the lysin.

Picture: UZH

Until now, the function of the individual histones in the various processes could only be determined indirectly. Molecular biologists Konrad Basler and Martina Hödl from the University of Zurich for the first time directly studied the function of two histones and one histone modification – with surprising results: Viable and fertile organisms develop in the absence of the histone known as H3.3. Additionally a particular histone modification was believed to be crucial for the activation of gene transcription.

However, the researchers were able to demonstrate that this is also not the case. The established models for the role and function of histones and their modifications during the transcription and cell-division need to be revised.

Fertile fruit flies despite lack of histone H3.3

For their study, Basler and his postdoctoral student Hödl used the fruit fly Drosophila melanogaster, the genome of which has been fully decoded. In an initial experiment, the scientists switched the two histone variants H3.2 and H3.3 in the cells. In normal (i.e. non-manipulated) cells, histone H3.2 is only expressed in one specific phase of the cell cycle, the so-called S phase. Histone H3.3, however, is always expressed. Consequently, it was assumed that histone H3.3 plays a key role in transcription, especially in reading genes. Thus, the general consensus was that RNA synthesis would be restricted in the absence of histone H3.3. “In our experiment, under lab conditions viable and fertile fruit flies could develop from cells that do not have any H3.3,” explains Hödl, summing up the result that turns the previous understanding on its head. “Organisms also begin to develop from cells without H3.2 but these died in the first larval stage,” Hödl continues.

Genes are switched on and off without histone modification

Histones are modified by different enzymes at different points in the protein. In a second experiment, Basler and Hödl examined the importance of modifications of the fourth amino acid of the protein, a lysine. Modification of this lysine is thought to play a key role in activating and deactivating the transcription of the gene. To test this, the scientists replaced the lysine with non-modifiable amino acids in all the histone H3 genes. The result was another big surprise. “Cells without this specific histone modification are able to divide normally,” explains Basler before adding: “However, they do so considerably more slowly than cells that have not been modified.” Therefore, the modification of this lysine is not essential for the activation of the genes.

The results show that the activation of genes and the inheritance of the ability to activate genes work differently than previously assumed. Clearly, the structure of the transcription process is extremely robust. According to Basler, the role of this common histone modification for cell function has been overestimated in recent years.

Literature:
Martina Hödl, Konrad Basler, Transcription in the Absence of Histone H3.2 and H3K4 Methylation. Current Biology. November 8, 2012. http://dx.doi.org/10.1016/j.cub.2012.10.008
Contact:
Dr. Martina Hödl
Institute of Molecular Life Sciences
University of Zurich
Tel. +41 44 635 31 15
E-Mail martina.hoedl@imls.uzh.ch

Nathalie Huber | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht Gene switch may repair DNA and prevent cancer
12.02.2016 | Institute for Integrated Cell-Material Sciences at Kyoto University

nachricht New method opens crystal clear views of biomolecules
11.02.2016 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen 100 Jahre nach Einsteins Vorhersage entdeckt

LIGO öffnet mit der Beobachtung kollidierender schwarzer Löcher ein neues Fenster zum Universum / Entscheidende Beiträge von Forschern der Max-Planck-Gesellschaft und der Leibniz Universität Hannover

Zum ersten Mal haben Wissenschaftler Kräuselungen der Raumzeit, sogenannte Gravitationswellen, beobachtet, die – ausgelöst von einem Großereignis im fernen...

Im Focus: Messkampagne POLSTRACC: Starker Ozonabbau über der Arktis möglich

Die arktische Stratosphäre war in diesem Winter bisher außergewöhnlich kalt, damit sind alle Voraussetzungen für das Auftreten eines starken Ozonabbaus in den nächsten Wochen gegeben. Diesen Schluss legen erste Ergebnisse der vom Karlsruher Institut für Technologie (KIT) koordinierten Messkampagne POLSTRACC nahe, die seit Ende 2015 in der Arktis läuft. Eine wesentliche Rolle spielen dabei vertikal ausgedehnte polare Stratosphärenwolken, die zuletzt weite Bereiche der Arktis bedeckten: An ihrer Oberfläche finden chemische Reaktionen statt, welche den Ozonabbau beschleunigen. Diese Wolken haben die Klimaforscher nun ungewöhnlicherweise bis in den untersten Bereich der Stratosphäre beobachtet.

„Weite Bereiche der Arktis waren über einen Zeitraum von mehreren Wochen von polaren Stratosphärenwolken zwischen etwa 14 und 26 Kilometern Höhe bedeckt –...

Im Focus: AIDS-Impfstoffproduktion in Algen

Pflanzen und Mikroorganismen werden vielfältig zur Medikamentenproduktion genutzt. Die Produktion solcher Biopharmazeutika in Pflanzen nennt man auch „Molecular Pharming“. Sie ist ein stetig wachsendes Feld der Pflanzenbiotechnologie. Hauptorganismen sind vor allem Hefe und Nutzpflanzen, wie Mais und Kartoffel – Pflanzen mit einem hohen Pflege- und Platzbedarf. Forscher um Prof. Ralph Bock am Max-Planck-Institut für Molekulare Pflanzenphysiologie in Potsdam wollen mit Hilfe von Algen ein ressourcenschonenderes System für die Herstellung von Medikamenten und Impfstoffen verfügbar machen. Die Praxistauglichkeit untersuchten sie an einem potentiellen AIDS-Impfstoff.

Die Produktion von Arzneimitteln in Pflanzen und Mikroorganismen ist nicht neu. Bereits 1982 gelang es, durch den Einsatz gentechnischer Methoden, Bakterien so...

Im Focus: Einzeller mit Durchblick: Wie Bakterien „sehen“

Ein 300 Jahre altes Rätsel der Biologie ist geknackt. Wie eine internationale Forschergruppe aus Deutschland, Großbritannien und Portugal herausgefunden hat, nutzen Cyanobakterien – weltweit vorkommende mikroskopisch kleine Einzeller – das Funktionsprinzip des Linsenauges, um Licht wahrzunehmen und sich darauf zuzubewegen. Der Schlüssel zu des Rätsels Lösung war eine Idee aus Karlsruhe: Jan Gerrit Korvink, Professor am KIT und Leiter des Instituts für Mikrostrukturtechnik (IMT) am KIT, nutzte Siliziumplatten und UV-Licht, um den Brechungsindex der Einzeller zu messen.

 

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

SUMA-Kongress 2016 – Die offene Web-Gesellschaft 4.0

12.02.2016 | Veranstaltungen

Career Center deutscher Hochschulen tagen an der Europa-Universität Viadrina

12.02.2016 | Veranstaltungen

Frauen in der digitalen Arbeitswelt: Gestaltung für die IT-Branche und das Ingenieurswesen

11.02.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ultraschnelle Kontrolle von Spinströmen durch Laserlicht

12.02.2016 | Physik Astronomie

SCHOTT stellt auf der Photonics West zukunftsweisende Lösungen für die Optik vor

12.02.2016 | Messenachrichten

Große Sauerstoffquellen im Erdinneren

12.02.2016 | Geowissenschaften