Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verwandtschaft geklärt: Schnecken und Muscheln sind Geschwister

09.09.2011
Wissenschaftler aus den USA, Norwegen und Deutschland erzeugen einmaligen Datensatz zur Rekonstruktion der Stammesgeschichte von Mollusken

Schnecken, Muscheln und Tintenfische – so verschieden sie aussehen, haben sie doch etwas gemeinsam: Sie gehören zu den Weichtieren, auch Mollusken genannt.


Theodoxus fluviatilis (Neritae), eine kleine Süßwasserschnecke (ca. 0,5 cm) aus dem Rhein bei Mainz. Foto: Christof Kühne, Universität Mainz, Institut für Zoologie


Der Wurmmollusk Wirenia argentea (Solenogastres) aus Norwegen, eine der Arten, für die nun erstmals umfassende molekulare Daten ermittelt wurden. Foto: Christiane Todt, Universität Bergen

Ein internationales Team von Wissenschaftlern mit Beteiligung der Johannes Gutenberg-Universität Mainz (JGU) hat jetzt in einer umfassenden molekularphylogenetischen Studie die Verwandtschaftsbeziehungen innerhalb der Weichtiere (Mollusca) erforscht.

Zu dem Tierstamm gehören über 100.000 noch existierende Arten, die in acht Hauptgruppen gegliedert werden. Bisher war umstritten, wie diese Gruppen miteinander verwandt sind und wie ihre Evolution verlaufen ist. In ihrer gemeinsamen Arbeit haben die Wissenschaftler aus den USA, Norwegen und Deutschland einen umfangreichen, bislang einmaligen Datensatz erzeugt, um die Stammesgeschichte der Weichtiere aufzudecken. In gewisser Weise unerwartet, fanden sie eine enge Verwandtschaft zwischen Schnecken und Muscheln.

Mollusken stehen im Tierreich hinsichtlich Arten- und Formenreichtum an zweiter Stelle hinter den Gliedertieren (Arthropoden). Als Nahrungsmittel und Lieferant von Perlen und Schalen sind vor allem Muscheln, Schnecken und Tintenfische von immenser wirtschaftlicher Bedeutung, andererseits können sie als Schädlinge sowohl ökologisch als auch ökonomisch beträchtlichen Schaden anrichten. Verschiedene Arten dienen in den Neurowissenschaften als Modell, um die Funktion von Nervenzellen und Gehirn zu untersuchen. Und trotzdem ist die Entwicklung der Mollusken rätselhaft und wird seit fast 200 Jahren kontrovers diskutiert.

Unter Leitung der Auburn University hat die internationale Gruppe von Wissenschaftlern der University of Bergen, der University of Florida und der JGU einen Datensatz zusammengetragen, der 84.000 Aminosäurepositionen auf 308 Genen von 49 Molluskenarten erfasst. „Es ist das erste Mal überhaupt, dass ein so großer molekularer Datensatz erzeugt wurde, um die Stammesgeschichte der Weichtiere von Grund auf zu klären, nachdem schon so lange viele unterschiedliche Hypothesen über die Verwandtschaftsverhältnisse kursieren“, erläutert Prof. Dr. Bernhard Lieb vom Institut für Zoologie. Zusammen mit Dr. Achim Meier, zur Zeit der Studie Postdoc am Institut, und Dr. Christiane Todt aus Bergen hat er essentielle Daten zu den sogenannten Solenogastren und Caudofoveaten, also kleinen, ursprünglichen Wurmmollusken, den Scaphopoda oder Kahnfüßern sowie einigen Schneckenarten geliefert, zu denen bisher keine genetischen Analysen vorlagen.

Die Untersuchungen bestätigen eine alte Hypothese, wonach sich die Mollusken in zwei Unterstämme aufteilen: Schalenweichtiere (Conchifera) und Stachelweichtiere (Aculifera). Tintenfische gehören dabei ebenfalls zu den schalentragenden Conchifera – befinden sich also in einem Topf mit Muscheln und Schnecken. Bernhard Lieb merkt dazu an, dass der Nautilus (Perlboot) als ein 450 Millionen Jahre alter Vertreter der Tintenfische noch immer eine Schale trägt, während sie bei anderen Vertretern dieser Klasse heute entweder stark reduziert oder verinnerlicht ist. Als ein unerwartetes Ergebnis fanden die beteiligten Forscher, dass Schnecken am engsten mit den Muscheln verwandt sind, sozusagen Geschwister, entgegen der früheren Annahme, dass Schnecken und Tintenfische – die Gruppen mit dem am höchsten entwickelten Kopf und „Gehirn“ – einander nahe stehen. „Diese Gruppierung von Schnecken und Muscheln hat bisher wenig Beachtung gefunden, obwohl sie über 95 Prozent der Mollusken-Arten ausmacht. Wir schlagen deshalb hierfür den Namen PLEISTOMOLLUSCA vor“, schreiben die Wissenschaftler in einer Publikation der Zeitschrift Nature.

Die Ergebnisse sind vor allem deswegen interessant und von weiterem wissenschaftlichen Nutzen, weil bestimmte Tintenfische und die marine Schnecke Aplysia californica, auf Deutsch „Seehase“, als Labormodelle für die Erforschung von Lernen und Gedächtnis dienen.

Zudem tragen die Ergebnisse dazu bei, wichtige Fossilienfunde – Mollusken gehören zu den häufigsten und am besten erhaltenen Fossilien überhaupt – einzuordnen und eventuell neu zu bewerten und damit die frühe Entwicklung dieses Tierstammes zu verstehen.

Veröffentlichung:
Kevin M. Kocot, Johanna T. Cannon, Christiane Todt, Mathew R. Citarella, Andrea B. Kohn, Achim Meyer, Scott R. Santos, Christoffer Schander, Leonid L. Moroz, Bernhard Lieb, and Kenneth M. Halanych
Phylogenomics reveals deep molluscan relationships
Nature, 4 September 2011, DOI: 10.1038/nature10382
Weitere Informationen:
Prof. Dr. Bernhard Lieb
Institut für Zoologie
Molekulare Tierphysiologie
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-23158
Fax +49 6131 39-24652
E-Mail: lieb@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.bio.uni-mainz.de/zoo/
http://www.staff.uni-mainz.de/lieb/
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature10382.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit den Augen der Biene: Zoologe der Uni Graz entwickelt Verfahren zur Verbesserung dunkler Bilder
11.12.2017 | Karl-Franzens-Universität Graz

nachricht Molekulare Chaperone als Helfer gegen Chorea-Huntington identifiziert
11.12.2017 | Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einmal durchleuchtet – dreifacher Informationsgewinn

11.12.2017 | Physik Astronomie

Kaskadennutzung auch bei Holz positiv

11.12.2017 | Agrar- Forstwissenschaften

Meilenstein in der Kreissägetechnologie

11.12.2017 | Energie und Elektrotechnik