Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Veröffentlichung in Cell: Pflanzen auf dem Pfad zur Fitness

21.06.2013
Bioinformatiker um David Heckmann von der Heinrich-Heine-Universität Düsseldorf simulieren die Evolution von Pflanzen.

Am Computermodell zeigen sie, dass im Laufe der Evolution die Fitness von Pflanzen zunimmt, etwa durch effizientere Stoffwechselmechanismen. Diese evolutiven Wege können möglicherweise auch künstlich beschleunigt werden, um Pflanzen schneller an geänderte Umweltbedingungen anzupassen.

Evolutionsbiologen scheinen dazu verdammt, ausschließlich die Vergangenheit zu untersuchen. Ihr Ziel wäre es jedoch, aus dem Wissen über die Interaktion einer Tier- oder Pflanzenart mit ihrer Umgebung den Verlauf der Evolution über Jahrmillionen hinweg vorherzusagen.

Besonders interessiert die Anpassung auf sich ändernde Umweltbedingungen wie die CO2 Konzentrationen in der Atmosphäre. Dies ist heute besonders aktuell im Hinblick auf das sich wandelnde Weltklima. In der Natur benötigt die Evolution hierfür oft Millionen von Jahren.

In der neuesten Ausgabe des angesehenen Fachmagazins Cell stellen David Heckmann und Kollegen von der Abteilung Bioinformatik der Heinrich-Heine-Universität Düsseldorf ein Computermodell vor, mit dem sie die Evolution von Pflanzen vorhersagen können, ohne Jahrmillionen warten zu müssen. Das Modell hilft nicht nur, die Evolution von Pflanzen in der Erdgeschichte zu verstehen. Die Modellvorhersagen zeigen auch Wege auf, wie die Evolution beschleunigt werden kann. Konkretes Ziel ist es dabei, landwirtschaftlich wichtigen Pflanzen wie Reis dabei zu helfen, schneller zu wachsen, um die wachsende Weltbevölkerung zu ernähren.

Das Computermodell bildet die relevanten chemischen Vorgänge beim Stoffwechsel und der Photosynthese in einer bestimmten Klasse von Pflanzen nach. Durch simulierte Mutationen lässt sich mit dem Modell die Evolution vom einem ursprünglichen, weniger effektiven Stoffwechsel (‚C3 Photosynthese’) zu der effizienteren Version (‚C4 Photosynthese’) nachvollziehen. Für die C4 Photosynthese entwickelten die Pflanzen eine interne Pumpe, die die CO2 Konzentration innerhalb bestimmter Zellen erhöht: genau um die molekularen Maschinen herum, die CO2 aus der Luft einfangen und in Zucker umwandeln.

Um Mutationen in echten Pflanzen zu simulieren, wurden zufällige Veränderungen an dem Modell vorgenommen. Heckmann und Kollegen untersuchten daran, wie sich die Mutationen auf die Wachstumsgeschwindigkeit der Pflanze auswirken. Sie fanden heraus, dass sich die Abfolge evolutionärer Veränderungen zwischen verschiedenen simulierten Pflanzen sehr ähnelt.

Man kann sich die Abfolge von Veränderungen als Pfade vorstellen, die in einer imaginären Landschaft nach oben streben. Der höchste Gipfel entspricht der fittesten Pflanze. Überraschenderweise ähnelt diese Landschaft dem japanischen Berg Fuji: ein einfacher Kegel ohne Täler oder Felsspalten; von jedem Punkt aus führt ein Schritt nach oben automatisch in Richtung Gipfel. Dies heißt: von jedem Entwicklungsstand aus gibt es Mutationen, die die Pflanze fitter machen. Indem sie die Eigenschaften echter Pflanzen aus verschiedenen Familien mit ihrem Modell verglichen, fanden die Forscher, dass die Pflanzen tatsächlich den vorhergesagten Pfaden durch die imaginäre Landschaft folgten.

Der Leiter der Studie, Prof. Dr. Martin Lercher, sagt dazu: „Es ist wie im richtigen Leben: Der erste Schritt ist der schwerste. Wenn Pflanzen einmal auf dem Weg zur effizienteren Photosynthese sind, dann passieren die späteren Schritte relativ schnell.“

Die Modellstudien haben einen praktischen Nutzen. Prof. Lercher dazu: „Unser Modell hilft Pflanzenzüchtern bei der Entscheidung, welche Sauerstoffkonzentration und Temperatur sie in ihren Gewächshäusern einstellen sollten, um die Pflanzen dazu zu bringen, sich sehr viel schneller in ertragreichere Sorten zu entwickeln.“ Man kann aber auch gezielt nachhelfen: Gerade der erste, langsamste Schritt könnte mit gentechnischen Verfahren erfolgen. Die nächsten, schnelleren Schritte können dann über herkömmliche Züchtungsverfahren gelingen.

Originalartikel
Heckmann et. al., „Predicting C4 photosynthesis evolution: modular, individually adaptive steps on a Mount Fuji fitness landscape”, Cell, 20. Juni 2013

Kontakt:
Prof. Dr. Martin Lercher
Informatik – Abteilung Bioinformatik
Heinrich-Heine-Universität Düsseldorf
Tel.: 0211/81-10546
E-Mail: lercher@cs.uni-duesseldorf.de

Dr. Victoria Meinschäfer | idw
Weitere Informationen:
http://www.uni-duesseldorf.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab
17.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

moove und Sony Lifelog machen mobil

17.01.2017 | Unternehmensmeldung

Erforschung von Elementarteilchen in Materialien

17.01.2017 | Physik Astronomie

Wasser - der heimliche Treiber des Kohlenstoffkreislaufs?

17.01.2017 | Geowissenschaften