Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Veröffentlichung in Cell: Pflanzen auf dem Pfad zur Fitness

21.06.2013
Bioinformatiker um David Heckmann von der Heinrich-Heine-Universität Düsseldorf simulieren die Evolution von Pflanzen.

Am Computermodell zeigen sie, dass im Laufe der Evolution die Fitness von Pflanzen zunimmt, etwa durch effizientere Stoffwechselmechanismen. Diese evolutiven Wege können möglicherweise auch künstlich beschleunigt werden, um Pflanzen schneller an geänderte Umweltbedingungen anzupassen.

Evolutionsbiologen scheinen dazu verdammt, ausschließlich die Vergangenheit zu untersuchen. Ihr Ziel wäre es jedoch, aus dem Wissen über die Interaktion einer Tier- oder Pflanzenart mit ihrer Umgebung den Verlauf der Evolution über Jahrmillionen hinweg vorherzusagen.

Besonders interessiert die Anpassung auf sich ändernde Umweltbedingungen wie die CO2 Konzentrationen in der Atmosphäre. Dies ist heute besonders aktuell im Hinblick auf das sich wandelnde Weltklima. In der Natur benötigt die Evolution hierfür oft Millionen von Jahren.

In der neuesten Ausgabe des angesehenen Fachmagazins Cell stellen David Heckmann und Kollegen von der Abteilung Bioinformatik der Heinrich-Heine-Universität Düsseldorf ein Computermodell vor, mit dem sie die Evolution von Pflanzen vorhersagen können, ohne Jahrmillionen warten zu müssen. Das Modell hilft nicht nur, die Evolution von Pflanzen in der Erdgeschichte zu verstehen. Die Modellvorhersagen zeigen auch Wege auf, wie die Evolution beschleunigt werden kann. Konkretes Ziel ist es dabei, landwirtschaftlich wichtigen Pflanzen wie Reis dabei zu helfen, schneller zu wachsen, um die wachsende Weltbevölkerung zu ernähren.

Das Computermodell bildet die relevanten chemischen Vorgänge beim Stoffwechsel und der Photosynthese in einer bestimmten Klasse von Pflanzen nach. Durch simulierte Mutationen lässt sich mit dem Modell die Evolution vom einem ursprünglichen, weniger effektiven Stoffwechsel (‚C3 Photosynthese’) zu der effizienteren Version (‚C4 Photosynthese’) nachvollziehen. Für die C4 Photosynthese entwickelten die Pflanzen eine interne Pumpe, die die CO2 Konzentration innerhalb bestimmter Zellen erhöht: genau um die molekularen Maschinen herum, die CO2 aus der Luft einfangen und in Zucker umwandeln.

Um Mutationen in echten Pflanzen zu simulieren, wurden zufällige Veränderungen an dem Modell vorgenommen. Heckmann und Kollegen untersuchten daran, wie sich die Mutationen auf die Wachstumsgeschwindigkeit der Pflanze auswirken. Sie fanden heraus, dass sich die Abfolge evolutionärer Veränderungen zwischen verschiedenen simulierten Pflanzen sehr ähnelt.

Man kann sich die Abfolge von Veränderungen als Pfade vorstellen, die in einer imaginären Landschaft nach oben streben. Der höchste Gipfel entspricht der fittesten Pflanze. Überraschenderweise ähnelt diese Landschaft dem japanischen Berg Fuji: ein einfacher Kegel ohne Täler oder Felsspalten; von jedem Punkt aus führt ein Schritt nach oben automatisch in Richtung Gipfel. Dies heißt: von jedem Entwicklungsstand aus gibt es Mutationen, die die Pflanze fitter machen. Indem sie die Eigenschaften echter Pflanzen aus verschiedenen Familien mit ihrem Modell verglichen, fanden die Forscher, dass die Pflanzen tatsächlich den vorhergesagten Pfaden durch die imaginäre Landschaft folgten.

Der Leiter der Studie, Prof. Dr. Martin Lercher, sagt dazu: „Es ist wie im richtigen Leben: Der erste Schritt ist der schwerste. Wenn Pflanzen einmal auf dem Weg zur effizienteren Photosynthese sind, dann passieren die späteren Schritte relativ schnell.“

Die Modellstudien haben einen praktischen Nutzen. Prof. Lercher dazu: „Unser Modell hilft Pflanzenzüchtern bei der Entscheidung, welche Sauerstoffkonzentration und Temperatur sie in ihren Gewächshäusern einstellen sollten, um die Pflanzen dazu zu bringen, sich sehr viel schneller in ertragreichere Sorten zu entwickeln.“ Man kann aber auch gezielt nachhelfen: Gerade der erste, langsamste Schritt könnte mit gentechnischen Verfahren erfolgen. Die nächsten, schnelleren Schritte können dann über herkömmliche Züchtungsverfahren gelingen.

Originalartikel
Heckmann et. al., „Predicting C4 photosynthesis evolution: modular, individually adaptive steps on a Mount Fuji fitness landscape”, Cell, 20. Juni 2013

Kontakt:
Prof. Dr. Martin Lercher
Informatik – Abteilung Bioinformatik
Heinrich-Heine-Universität Düsseldorf
Tel.: 0211/81-10546
E-Mail: lercher@cs.uni-duesseldorf.de

Dr. Victoria Meinschäfer | idw
Weitere Informationen:
http://www.uni-duesseldorf.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten