Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vermeintlich nutzlose Teile der DNA im Erbgut des Menschen erfüllen regulatorische Aufgaben

07.09.2012
Heidelberger Forscher leisten Beitrag zur Enzyklopädie aller funktionellen DNA-Elemente im menschlichen Genom

Ein unerwartet großer Teil vermeintlich nutzloser DNA im Erbgut des Menschen ist tatsächlich doch für die Regulation der Genaktivität zuständig. Das zeigen die Untersuchungen eines internationalen Forscherverbundes des Großprojektes ENCODE, in dem Wissenschaftler – darunter Biologen des Centre for Organismal Studies der Universität Heidelberg – an einer „Enzyklopädie“ aller funktionellen DNA-Elemente im menschlichen Genom arbeiten.

Die Heidelberger Forscher konnten mit Hilfe ihrer Arbeiten am Modellorganismus des Medaka-Fisches exemplarisch bestätigen, dass ein Großteil der untersuchten Elemente im nicht-proteinkodierenden Teil der DNA die Arbeit von Genen spezifisch regulieren kann. Die Forschungsergebnisse der ENCODE-Studie wurden jetzt unter anderem in „Nature“ veröffentlicht.

Das Erbgut des Menschen enthält rund 20.000 Gene, die den Bauplan für alle Proteine darstellen, die unseren Körper ausmachen – von Muskeln über Leber und Auge bis hin zu Nervenzellen und deren Botenstoffe. Allerdings handelt es sich bei diesen Genen nur um etwa drei Prozent des menschlichen Genoms. Über die mögliche Funktion des restlichen Teils von immerhin rund 97 Prozent gab es jedoch lange Unklarheit. „Auch das Verständnis, wie Gene reguliert sind, damit sie zu bestimmten Zeitpunkten in bestimmten Organen aktiv sind, war bisher begrenzt. Nur in einzelnen Fällen ist dies genauer und mit großem Aufwand untersucht worden“, erläutert Prof. Dr. Joachim Wittbrodt, der am Centre for Organismal Studies der Universität Heidelberg die Abteilung Tierphysiologie/Entwicklungsbiologie leitet.

Das ENCODE-Projekt hat sich zum Ziel gesetzt, das gesamte Erbgut des Menschen genauer zu charakterisieren und dabei Funktionen für den großen, nicht-proteinkodierenden Teil des menschlichen Genoms zu identifizieren und in den Kontext der Genregulation zu setzen. Voraussetzung dafür war die Entwicklung neuer Untersuchungsmethoden, die in einem großen Maßstab durchgeführt werden können und die es zugleich erlauben, die riesigen Datenmengen zu verarbeiten und analysierbar zu machen. Mit Hilfe biochemischer und bioinformatischer Verfahren wurden im menschlichen Genom unter anderem „Kandidaten“ für solche DNA-Elemente identifiziert, die mitbestimmen, zu welchem Zeitpunkt und in welchem Organ ein Gen aktiv ist. Für die experimentelle Bestätigung dieser sogenannten Verstärker, die Enhancer genannt werden, leistete das Team von Prof. Wittbrodt einen großen Beitrag.

Die Heidelberger Biologen haben die vorab herausgefilterten Elemente der DNA, die möglicherweise als Verstärker wirken, so präpariert, dass sie zur Steuerung der Aktivität eines Reporters genutzt werden konnten. Diese Reporter sind im Modellorganismus des Medaka-Fisches zu identifizieren, da sie grün leuchten. Die Wissenschaftler konnten auf diese Weise belegen, dass ein Großteil der untersuchten DNA-Elemente Genaktivität spezifisch regulieren kann. „Unser Nachweis hat besonderes Gewicht, da er nicht in einem experimentell isolierten System durchgeführt wurde, sondern während der embryonalen Entwicklung des Medaka-Fisches erfolgt ist“, sagt Dr. Stephanie Schneider vom Centre for Organismal Studies.

Finanziert wurde das Großprojekt „Encyclopedia of DNA Elements“ (ENCODE) mit 80 Arbeitsgruppen weltweit vom National Human Genome Research Institute in den USA. Die Daten, die im Rahmen von ENCODE generiert, gesammelt und ausgewertet wurden, sind öffentlich zugänglich und dienen vor allem als wertvolle Resource für zukünftige Forschungsarbeiten.

Hinweis an die Redaktionen:
Digitales Bildmaterial kann in der Pressestelle abgerufen werden.

Originalveröffentlichung:
Ian Dunham et al.: An integrated encyclopedia of DNA elements in the human genome, Nature 489, 57-74
(06 September 2012), doi:10.1038/nature11247

Kontakt:
Prof. Dr. Joachim Wittbrodt
Dr. Stephanie Schneider
Centre for Organismal Studies
Telefon (06221) 54-5653, 54-5607
stephanie.schneider@cos.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Berichte zu: Biologe DNA DNA-Elemente ENCODE Erbgut Gen FTO Genaktivität Genom Modellorganismus Organ

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen