Mit Verlusten ist zu rechnen: Wie Mykoplasmen am Leben bleiben

Mykoplasmen sind für zahlreiche wichtige Krankheiten verantwortlich, darunter beispielsweise die atypische Lungenentzündung beim Menschen. Durch Mykoplasmen ausgelöste Euterentzündungen bei Nutztieren stellen ein besonderes Problem für die Milchindustrie dar und sind daher Thema intensiver Studien.

Einer der wichtigsten Erreger von Euterentzündungen bei Schafen und Ziegen, Mycoplasma agalactiae, ist Untersuchungsobjekt der Forschungsgruppe von Renate Rosengarten und Rohini Chopra-Dewasthaly am Institut für Bakteriologie, Mykologie und Hygiene der Veterinärmedizinischen Universität Wien (Vetmeduni Vienna).

Unterlaufen der Wirtsabwehr durch ständige Oberflächenänderung …

Unter allen Mikroben, die sich selbstständig replizieren können, besitzen Mykoplasmen das kleinste Genom. Sie repräsentieren daher einen idealen Ausgangspunkt für die Konstruktion synthetischer Genome auf der Suche nach der kleinstmöglichen lebenden Zelle. Obwohl einige Gene entbehrlich erscheinen, wenn Mykoplasmen unter idealen Bedingungen im Labor gezüchtet werden, nimmt man an, dass die meisten Gene überlebensnotwendig sind, sobald Mykoplasmen an Wirtszellen anhaften und mit dem Immunsystem des Wirtes interagieren. Eine solche Gruppe von Genen kodiert jene hoch variablen Proteine, die an der Membranoberfläche der Mykoplasmen lokalisiert sind; diese Proteine kompensieren das Fehlen einer schützenden Zellwand, wie sie bei „normalen“ Bakterien vorkommt, und ermöglichen es dem Erreger, die Verteidigungsmechanismen des Wirtsorganismus zu unterlaufen.

Die Wissenschafter an der Vetmeduni Vienna haben kürzlich jene Gene, die für diese variablen Oberflächenproteine zuständig sind, bei Mycoplasma agalactiae identifiziert und genau beschrieben, wie sie an- und abgeschaltet werden. Es hat sich gezeigt, dass diese sogenannte Phasenvariation durch ein spezielles Enzym, eine Rekombinase, reguliert wird, deren Aktionsmechanismus wiederum an bestimmten Positionen durch kleine DNA-Sequenzen gesteuert wird. Wird das Gen inaktiviert, das die Rekombinase kodiert, dann entstehen „Phase-locked Mutants“, also Mykoplasmen, die ihre Oberflächenproteine nicht mehr verändern können.

… aber mit hohem Risiko

Stefan Czurda, ein Doktorand in der Gruppe von Renate Rosengarten und Rohini Chopra-Dewasthaly, hat die exakten Positionen im Genom identifiziert, an denen die Rekombinase ansetzt. Es gibt Stellen, an denen die Rekombinase die DNA „schneidet“, um die Gene für die Oberflächenproteine neu zu durchmischen, und zusätzlich auch benachbarte DNA-Sequenzen, die notwendig sind, damit das Enzym effizient arbeiten kann. Mithilfe einer neuen Nachweismethode hat er gezeigt, dass die Rekombinase auch imstande ist, DNA-Abschnitte zu entfernen, so auch jenes Signal, das die Produktion der variablen Oberflächenproteine kontrolliert. Das würde betroffenen Mykoplasmazellen das Überleben im Wirtsorganismus wahrscheinlich erschweren oder gar unmöglich machen.

Trotz ihrer sehr kleinen Genome sind Mykoplasmen höchst erfolgreiche Krankheitserreger. Es zeige sich, wie wichtig die Variation der Oberflächenproteine als Überlebensstrategie für Mycoplasma galactiae ist, meinen die Wissenschaftler der Vetmeduni Vienna. Mycoplasma agalactiae nimmt es zugunsten dieses Oberflächenvariationssystems quasi in Kauf, gegebenenfalls wertvolle DNA-Abschnitte zu verlieren – und dies alles trotz des kleinen Genoms.

„Xer1-Mediated Site-Specific DNA Inversions and Excisions in Mycoplasma agalactiae” von Stefan Czurda, Wolfgang Jechlinger, Renate Rosengarten und Rohini Chopra-Dewasthaly wurde in der Septemberausgabe des „Journal of Bacteriology“ (Vol. 192, issue 17) als Titelgeschichte veröffentlicht. Die Arbeit wurde unterstützt durch Mittel des österreichischen Wissenschaftsfonds FWF.

Media Contact

Beate Zöchmeister idw

Weitere Informationen:

http://www.vetmeduni.ac.at/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer