Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vergessen und verloren - wenn Proteine unser Gehirn "abschalten" lassen

17.02.2009
Max-Planck-Forscher erhalten wichtige neue Einblicke in die Struktur und Wirkungsweise eines Alzheimer-Proteins

Über welche Module das Tau-Protein in den Nervenzellen von Alzheimer-Patienten so zerstörend wirken kann, haben Forscher des Max-Planck-Instituts für biophysikalische Chemie (Göttingen) und der Max-Planck-Arbeitsgruppe für strukturelle Molekularbiologie (DESY, Hamburg) mithilfe der Kernspinresonanz-Methode aufgeklärt. (PLoS Biology, 17. Februar 2009)


Die Struktur des Tau-Proteins
Bild: Max-Planck-Institut für biophysikalische Chemie/Zweckstetter

Vertraute alltägliche Handgriffe fallen einem nicht mehr ein, Gegenstände bleiben unauffindbar, Neues bleibt nicht hängen. Für weltweit fast 30 Millionen Menschen ist dies Realität. Sie leiden an der Alzheimer-Krankheit (Morbus Alzheimer), einer irreversiblen Form der Demenz, die mit Gedächtnislücken beginnt und im Verlust der eigenen Persönlichkeit und Hilflosigkeit endet. Der wichtigste Risikofaktor, an Morbus Alzheimer zu erkranken, ist das Altern. Denn die meisten Alzheimer-Fälle treten erst nach dem 65. Lebensjahr auf.

Zwei Arten typischer Proteinablagerungen lassen sich in den betroffenen Hirngeweben der Patienten nachweisen. Zwischen Nervenzellen sind Amyloid-Plaques, "Proteinverklumpungen", diffus in der Hirnrinde und anderen Gehirnregionen eingestreut. Im Inneren der Nervenzellen liegen zu Knäueln verklumpte Tau-Fibrillen. Diese tragen im Zusammenspiel mit genetischen Faktoren dazu bei, dass der Stoffwechsel der Nervenzellen aus dem Ruder läuft und die Kommunikation zwischen den Nervenzellen gestört ist. Die Nervenzellen verkümmern und sterben schließlich ab.

Doch ist das Tau-Protein für Nervenzellen keineswegs nur schädlich, sondern sogar lebenswichtig. In seiner normalen Form bindet Tau an Mikrotubuli-Proteine, lange röhrenförmige Bausteine des Zytoskeletts - das Grundgerüst biologischer Zellen. Bei Menschen, die an Alzheimer oder ähnlichen Demenzen erkranken, ist Tau in den Nervenzellen im Alter hingegen deutlich verändert. "Es hat in seiner abnormen Form weit mehr Phosphatreste angeheftet. Uns interessierte, wie manche Phosphatreste die Struktur des Proteins so verändern, dass es nicht mehr an Mikrotubuli binden kann", erklärt Markus Zweckstetter vom Max-Planck-Institut für biophysikalische Chemie.

Exot unter den Proteinen

Doch Tau ist ein regelrechter Exot unter den Proteinen und vielen Untersuchungsmethoden wie Röntgenkristallographie nicht zugänglich. Weder Hitze noch Säure können dem Protein etwas anhaben. Und während die meisten Proteine erst durch entsprechende Faltung "in Form" kommen, verrichtet Tau seine Aufgaben nahezu ungefaltet. Äußerst flexibel ändert es schnell seine Form.

Mittels Kernspinresonanz-Spektroskopie ist es den Forschern jetzt gelungen, neue Einblicke in die Tau-Struktur zu erhalten und seine schnellen Bewegungen zu verfolgen. Erstmals konnten so Strukturänderungen eines großen, nahezu ungefalteten Proteins im Detail untersucht werden. Finanziert wurde dieses Forschungsprojekt unter anderem vom Göttinger DFG-Forschungszentrum "Molekularphysiologie des Gehirns" (CMPB), der Volkswagenstiftung und einem institutsübergreifenden Vorhaben der Max-Planck-Gesellschaft, "Toxic protein conformation", erklärt Christian Griesinger, Leiter der Abteilung NMR-basierte Strukturbiologie am Göttinger Max-Planck-Institut.

"Wir sehen direkt, welche Module des Tau-Proteins an Mikrotubuli binden. Ist das Protein mit mehr Phosphatresten beladen als normal, so ist die Bindung dieser Module deutlich geschwächt. Tau- und Mikrotubuli-Proteine können nicht mehr miteinander in Wechselwirkung treten", fasst Zweckstetter die Ergebnisse der Forscher zusammen. Als direkte Folge ist der Stofftransport innerhalb der Zelle entlang der Mikrotubuli-"Schienen" gestört, Nervenzell-Endigungen wachsen nicht mehr richtig. Aber möglicherweise kann Tau so auch mit anderen Partnern in der Zelle nicht mehr interagieren. "Wir haben das Protein jetzt in der Hand und können die Wechselwirkung mit anderen Bindungspartnern in der Zelle sehr genau untersuchen", so Zweckstetter.

Angriffspunkt für Arzneimittel

Eckhard und Eva Mandelkow von der Max-Planck-Arbeitsgruppe für strukturelle Molekularbiologie in Hamburg sehen in Tau auch "einen guten Angriffspunkt für Arzneimittel". An genetisch veränderten Mäusen hatten Eva Mandelkow und Mitarbeiter in früheren Arbeiten bereits zeigen können, dass die fatalen Folgen der Tau-Bündel reversibel sind. Im nächsten Schritt möchten die Max-Planck-Forscher nun untersuchen, ob mögliche Hemmstoffe mit dem Tau-Protein wechselwirken und ob sie die Anhäufung der Tau-Bündel verhindern können.

Originalveröffentlichung:

Marco D. Mukrasch, Stefan Bibow, Jegannath Korukottu, Sadasivam Jeganathan, Jacek Biernat, Christian Griesinger, Eckhard Mandelkow, Markus Zweckstetter
Structural Polymorphism of 441-residue tau at single residue resolution
PLoS Biology, 17. Februar 2009

Dr. Christina Beck | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab
17.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau