Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vergessen und verloren - wenn Proteine unser Gehirn "abschalten" lassen

17.02.2009
Max-Planck-Forscher erhalten wichtige neue Einblicke in die Struktur und Wirkungsweise eines Alzheimer-Proteins

Über welche Module das Tau-Protein in den Nervenzellen von Alzheimer-Patienten so zerstörend wirken kann, haben Forscher des Max-Planck-Instituts für biophysikalische Chemie (Göttingen) und der Max-Planck-Arbeitsgruppe für strukturelle Molekularbiologie (DESY, Hamburg) mithilfe der Kernspinresonanz-Methode aufgeklärt. (PLoS Biology, 17. Februar 2009)


Die Struktur des Tau-Proteins
Bild: Max-Planck-Institut für biophysikalische Chemie/Zweckstetter

Vertraute alltägliche Handgriffe fallen einem nicht mehr ein, Gegenstände bleiben unauffindbar, Neues bleibt nicht hängen. Für weltweit fast 30 Millionen Menschen ist dies Realität. Sie leiden an der Alzheimer-Krankheit (Morbus Alzheimer), einer irreversiblen Form der Demenz, die mit Gedächtnislücken beginnt und im Verlust der eigenen Persönlichkeit und Hilflosigkeit endet. Der wichtigste Risikofaktor, an Morbus Alzheimer zu erkranken, ist das Altern. Denn die meisten Alzheimer-Fälle treten erst nach dem 65. Lebensjahr auf.

Zwei Arten typischer Proteinablagerungen lassen sich in den betroffenen Hirngeweben der Patienten nachweisen. Zwischen Nervenzellen sind Amyloid-Plaques, "Proteinverklumpungen", diffus in der Hirnrinde und anderen Gehirnregionen eingestreut. Im Inneren der Nervenzellen liegen zu Knäueln verklumpte Tau-Fibrillen. Diese tragen im Zusammenspiel mit genetischen Faktoren dazu bei, dass der Stoffwechsel der Nervenzellen aus dem Ruder läuft und die Kommunikation zwischen den Nervenzellen gestört ist. Die Nervenzellen verkümmern und sterben schließlich ab.

Doch ist das Tau-Protein für Nervenzellen keineswegs nur schädlich, sondern sogar lebenswichtig. In seiner normalen Form bindet Tau an Mikrotubuli-Proteine, lange röhrenförmige Bausteine des Zytoskeletts - das Grundgerüst biologischer Zellen. Bei Menschen, die an Alzheimer oder ähnlichen Demenzen erkranken, ist Tau in den Nervenzellen im Alter hingegen deutlich verändert. "Es hat in seiner abnormen Form weit mehr Phosphatreste angeheftet. Uns interessierte, wie manche Phosphatreste die Struktur des Proteins so verändern, dass es nicht mehr an Mikrotubuli binden kann", erklärt Markus Zweckstetter vom Max-Planck-Institut für biophysikalische Chemie.

Exot unter den Proteinen

Doch Tau ist ein regelrechter Exot unter den Proteinen und vielen Untersuchungsmethoden wie Röntgenkristallographie nicht zugänglich. Weder Hitze noch Säure können dem Protein etwas anhaben. Und während die meisten Proteine erst durch entsprechende Faltung "in Form" kommen, verrichtet Tau seine Aufgaben nahezu ungefaltet. Äußerst flexibel ändert es schnell seine Form.

Mittels Kernspinresonanz-Spektroskopie ist es den Forschern jetzt gelungen, neue Einblicke in die Tau-Struktur zu erhalten und seine schnellen Bewegungen zu verfolgen. Erstmals konnten so Strukturänderungen eines großen, nahezu ungefalteten Proteins im Detail untersucht werden. Finanziert wurde dieses Forschungsprojekt unter anderem vom Göttinger DFG-Forschungszentrum "Molekularphysiologie des Gehirns" (CMPB), der Volkswagenstiftung und einem institutsübergreifenden Vorhaben der Max-Planck-Gesellschaft, "Toxic protein conformation", erklärt Christian Griesinger, Leiter der Abteilung NMR-basierte Strukturbiologie am Göttinger Max-Planck-Institut.

"Wir sehen direkt, welche Module des Tau-Proteins an Mikrotubuli binden. Ist das Protein mit mehr Phosphatresten beladen als normal, so ist die Bindung dieser Module deutlich geschwächt. Tau- und Mikrotubuli-Proteine können nicht mehr miteinander in Wechselwirkung treten", fasst Zweckstetter die Ergebnisse der Forscher zusammen. Als direkte Folge ist der Stofftransport innerhalb der Zelle entlang der Mikrotubuli-"Schienen" gestört, Nervenzell-Endigungen wachsen nicht mehr richtig. Aber möglicherweise kann Tau so auch mit anderen Partnern in der Zelle nicht mehr interagieren. "Wir haben das Protein jetzt in der Hand und können die Wechselwirkung mit anderen Bindungspartnern in der Zelle sehr genau untersuchen", so Zweckstetter.

Angriffspunkt für Arzneimittel

Eckhard und Eva Mandelkow von der Max-Planck-Arbeitsgruppe für strukturelle Molekularbiologie in Hamburg sehen in Tau auch "einen guten Angriffspunkt für Arzneimittel". An genetisch veränderten Mäusen hatten Eva Mandelkow und Mitarbeiter in früheren Arbeiten bereits zeigen können, dass die fatalen Folgen der Tau-Bündel reversibel sind. Im nächsten Schritt möchten die Max-Planck-Forscher nun untersuchen, ob mögliche Hemmstoffe mit dem Tau-Protein wechselwirken und ob sie die Anhäufung der Tau-Bündel verhindern können.

Originalveröffentlichung:

Marco D. Mukrasch, Stefan Bibow, Jegannath Korukottu, Sadasivam Jeganathan, Jacek Biernat, Christian Griesinger, Eckhard Mandelkow, Markus Zweckstetter
Structural Polymorphism of 441-residue tau at single residue resolution
PLoS Biology, 17. Februar 2009

Dr. Christina Beck | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Polymere aus Bor produzieren
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Modularer Genverstärker fördert Leukämien und steuert Wirksamkeit von Chemotherapie
18.01.2018 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Optimierter Einsatz magnetischer Bauteile - Seminar „Magnettechnik Magnetwerkstoffe“

18.01.2018 | Seminare Workshops

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungsnachrichten

Perowskit-Solarzellen: mesoporöse Zwischenschicht mildert Einfluss von Defekten

18.01.2018 | Energie und Elektrotechnik