Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vergessen ist nicht verloren - das Gehirn sorgt vor

13.11.2008
Wissenschaftler beginnen zu verstehen, was im Gehirn passiert wenn es lernt oder vergisst. Sicher ist, dass Veränderungen der Kontakte zwischen Nervenzellen dabei eine große Rolle spielen.

Doch können solche Strukturänderungen auch das bekannte Phänomen erklären, dass es deutlich leichter ist etwas Vergessenes wiederzuerlernen als etwas ganz neu zu lernen? Wissenschaftler des Max-Planck-Instituts für Neurobiologie zeigen nun, dass viele der bei einem Lernvorgang gewachsenen Zellkontakte wohl nur inaktiviert, aber nicht abgebaut werden, wenn sie nicht mehr gebraucht werden. Die Reaktivierung dieser "Kontakte auf Vorrat" ermöglicht das schnellere Wiedererlernen vergessener Gedächtnisinhalte.

Anders als bei einem Insekt, das selbst beim zehnten Versuch wieder mit Schwung gegen die Fensterscheibe prallt, ist unser Gehirn in der Lage sehr komplexe Zusammenhänge und motorische Abläufe zu lernen. Dies ermöglicht uns nicht nur das unfallfreie Vermeiden von Glastüren, sondern auch das Erlernen so verschiedener Dinge wie Fahrrad- oder Skifahren, das Sprechen verschiedener Sprachen, oder das Spielen eines Musikinstruments. Dabei lernt das jugendliche Gehirn leichter, doch die Fähigkeit zu lernen bleibt bis ins hohe Alter erhalten. Schon lange versuchen Wissenschaftlern zu verstehen, was beim Lernen oder Vergessen im Gehirn vorgeht.

Flexible Informationsverbindungen
Um etwas zu lernen, also neue Informationen verarbeiten zu können, gehen Nervenzellen neue Verbindungen miteinander ein. Steht eine Information an, für die es noch keinen Verarbeitungsweg gibt, wachsen von der entsprechenden Nervenzelle feine Fortsätze auf ihre Nachbarzellen zu. Bildet sich am Ende eines Fortsatzes eine spezielle Kontaktstelle, eine Synapse, ist der Austausch von Informationen zwischen den Zellen möglich - die neue Information wird gelernt. Löst sich der Kontakt wieder auf, wird das Gelernte vergessen.
Lernen und Wiedererlernen - ein feiner Unterschied
Die Beobachtung, dass Lernen und Gedächtnis mit solchen Strukturveränderungen im Gehirn einhergehen ist relativ neu, und viele Fragen sind noch offen. Was passiert zum Beispiel, wenn das Gehirn etwas lernt, es wieder vergisst und später noch einmal lernen muss? Die Erfahrung zeigt, dass einmal gelerntes Radfahren schnell wiederkommt, egal wie lange es nicht geübt wurde. Auch bei anderen Dingen fällt ein "Wiederlernen" meist leichter als ein "Neulernen". Hat dieser feine Unterschied ebenfalls seinen Ursprung in der Struktur der Nervenzellen?
Zellfortsätze: "Was man hat, hat man"
Wissenschaftler des Max-Planck-Instituts für Neurobiologie konnten nun zeigen, dass es tatsächlich deutliche Unterschiede im Auswachsen von Zellkontakten gibt - je nachdem, ob eine Information neu oder erneut gelernt wird. So zeigten Nervenzellen, die für die Verarbeitung von visuellen Informationen zuständig sind, ein deutlich erhöhtes Auswachsen neuer Zellkontakte, wenn sie zeitweise keine Information mehr von "ihrem" Auge bekamen. Nach zirka fünf Tagen hatten sich die Nervenzellen soweit neu verbunden, dass sie nun auf Informationen aus dem anderen Auge reagieren konnten - das Gehirn hatte gelernt sich mit nur einem Auge zurechtzufinden. Kamen nun wieder Informationen von dem zwischenzeitlich inaktiven Auge, nahmen die Nervenzellen schnell ihre ursprüngliche Arbeit wieder auf und reagierten kaum mehr auf Signale aus dem anderen Auge.

"Völlig unerwartet war jedoch, dass ein Großteil der neu entstandenen Fortsätze bestehen blieb", erklärt Mark Hübener, der Leiter der Studie. Alle Beobachtungen deuten darauf hin, dass häufig nur die Synapsen inaktiviert und somit die Informationsübertragungen unterbrochen werden. "Da eine einmal gemachte Erfahrung vielleicht später noch einmal gebraucht wird, scheint das Gehirn ein paar Fortsätze sozusagen "auf Vorrat" zu behalten", so Hübener. Und tatsächlich: Wurde das gleiche Auge zu einem späteren Zeitpunkt noch einmal inaktiviert, verlief die Neuorganisation der Nervenzellen deutlich schneller - und das, obwohl keine neuen Fortsätze entstanden!

Nützliche Reaktivierung
Viele der einmal gebildeten Fortsätze zwischen Nervenzellen bleiben somit bestehen und erleichtern ein späteres Wiedererlernen. Eine bedeutende Erkenntnis zum Verständnis der grundlegenden Vorgänge beim Lernen und Erinnern. So stehen wir - wenn wir es einmal gelernt haben - auch nach vielen Jahren ohne Skifahren bereits nach kurzer Übungszeit wieder sicher auf den Brettern.
Originalveröffentlichung
Sonja B. Hofer, Thomas D. Mrsic-Flogel, Tobias Bonhoeffer, Mark Hübener.
Experience leaves a lasting structural trace in cortical circuits.
Nature, 12. Oktober 2008
Kontakt:
Dr. Stefanie Merker
Max-Planck-Institut für Neurobiologie
Öffentlichkeitsarbeit
Tel.: 089 - 8578 3514
Email: merker@neuro.mpg.de
Prof. Dr. Mark Hübener
Max-Planck-Institut für Neurobiologie
Email: mark@neuro.mpg.de

Dr. Stefanie Merker | Max-Planck-Institut
Weitere Informationen:
http://www.neuro.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Von der Genexpression zur Mikrostruktur des Gehirns
24.04.2018 | Forschungszentrum Jülich

nachricht Nano-Ampel zeigt Risiko an
24.04.2018 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von der Genexpression zur Mikrostruktur des Gehirns

24.04.2018 | Biowissenschaften Chemie

Bestrahlungserfolg bei Hirntumoren lässt sich mit kombinierter PET/MRT vorhersagen

24.04.2018 | Medizintechnik

RWI/ISL-Containerumschlag-Index auf hohem Niveau deutlich rückläufig

24.04.2018 | Wirtschaft Finanzen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics