Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vergessen ist nicht verloren - das Gehirn sorgt vor

13.11.2008
Wissenschaftler beginnen zu verstehen, was im Gehirn passiert wenn es lernt oder vergisst. Sicher ist, dass Veränderungen der Kontakte zwischen Nervenzellen dabei eine große Rolle spielen.

Doch können solche Strukturänderungen auch das bekannte Phänomen erklären, dass es deutlich leichter ist etwas Vergessenes wiederzuerlernen als etwas ganz neu zu lernen? Wissenschaftler des Max-Planck-Instituts für Neurobiologie zeigen nun, dass viele der bei einem Lernvorgang gewachsenen Zellkontakte wohl nur inaktiviert, aber nicht abgebaut werden, wenn sie nicht mehr gebraucht werden. Die Reaktivierung dieser "Kontakte auf Vorrat" ermöglicht das schnellere Wiedererlernen vergessener Gedächtnisinhalte.

Anders als bei einem Insekt, das selbst beim zehnten Versuch wieder mit Schwung gegen die Fensterscheibe prallt, ist unser Gehirn in der Lage sehr komplexe Zusammenhänge und motorische Abläufe zu lernen. Dies ermöglicht uns nicht nur das unfallfreie Vermeiden von Glastüren, sondern auch das Erlernen so verschiedener Dinge wie Fahrrad- oder Skifahren, das Sprechen verschiedener Sprachen, oder das Spielen eines Musikinstruments. Dabei lernt das jugendliche Gehirn leichter, doch die Fähigkeit zu lernen bleibt bis ins hohe Alter erhalten. Schon lange versuchen Wissenschaftlern zu verstehen, was beim Lernen oder Vergessen im Gehirn vorgeht.

Flexible Informationsverbindungen
Um etwas zu lernen, also neue Informationen verarbeiten zu können, gehen Nervenzellen neue Verbindungen miteinander ein. Steht eine Information an, für die es noch keinen Verarbeitungsweg gibt, wachsen von der entsprechenden Nervenzelle feine Fortsätze auf ihre Nachbarzellen zu. Bildet sich am Ende eines Fortsatzes eine spezielle Kontaktstelle, eine Synapse, ist der Austausch von Informationen zwischen den Zellen möglich - die neue Information wird gelernt. Löst sich der Kontakt wieder auf, wird das Gelernte vergessen.
Lernen und Wiedererlernen - ein feiner Unterschied
Die Beobachtung, dass Lernen und Gedächtnis mit solchen Strukturveränderungen im Gehirn einhergehen ist relativ neu, und viele Fragen sind noch offen. Was passiert zum Beispiel, wenn das Gehirn etwas lernt, es wieder vergisst und später noch einmal lernen muss? Die Erfahrung zeigt, dass einmal gelerntes Radfahren schnell wiederkommt, egal wie lange es nicht geübt wurde. Auch bei anderen Dingen fällt ein "Wiederlernen" meist leichter als ein "Neulernen". Hat dieser feine Unterschied ebenfalls seinen Ursprung in der Struktur der Nervenzellen?
Zellfortsätze: "Was man hat, hat man"
Wissenschaftler des Max-Planck-Instituts für Neurobiologie konnten nun zeigen, dass es tatsächlich deutliche Unterschiede im Auswachsen von Zellkontakten gibt - je nachdem, ob eine Information neu oder erneut gelernt wird. So zeigten Nervenzellen, die für die Verarbeitung von visuellen Informationen zuständig sind, ein deutlich erhöhtes Auswachsen neuer Zellkontakte, wenn sie zeitweise keine Information mehr von "ihrem" Auge bekamen. Nach zirka fünf Tagen hatten sich die Nervenzellen soweit neu verbunden, dass sie nun auf Informationen aus dem anderen Auge reagieren konnten - das Gehirn hatte gelernt sich mit nur einem Auge zurechtzufinden. Kamen nun wieder Informationen von dem zwischenzeitlich inaktiven Auge, nahmen die Nervenzellen schnell ihre ursprüngliche Arbeit wieder auf und reagierten kaum mehr auf Signale aus dem anderen Auge.

"Völlig unerwartet war jedoch, dass ein Großteil der neu entstandenen Fortsätze bestehen blieb", erklärt Mark Hübener, der Leiter der Studie. Alle Beobachtungen deuten darauf hin, dass häufig nur die Synapsen inaktiviert und somit die Informationsübertragungen unterbrochen werden. "Da eine einmal gemachte Erfahrung vielleicht später noch einmal gebraucht wird, scheint das Gehirn ein paar Fortsätze sozusagen "auf Vorrat" zu behalten", so Hübener. Und tatsächlich: Wurde das gleiche Auge zu einem späteren Zeitpunkt noch einmal inaktiviert, verlief die Neuorganisation der Nervenzellen deutlich schneller - und das, obwohl keine neuen Fortsätze entstanden!

Nützliche Reaktivierung
Viele der einmal gebildeten Fortsätze zwischen Nervenzellen bleiben somit bestehen und erleichtern ein späteres Wiedererlernen. Eine bedeutende Erkenntnis zum Verständnis der grundlegenden Vorgänge beim Lernen und Erinnern. So stehen wir - wenn wir es einmal gelernt haben - auch nach vielen Jahren ohne Skifahren bereits nach kurzer Übungszeit wieder sicher auf den Brettern.
Originalveröffentlichung
Sonja B. Hofer, Thomas D. Mrsic-Flogel, Tobias Bonhoeffer, Mark Hübener.
Experience leaves a lasting structural trace in cortical circuits.
Nature, 12. Oktober 2008
Kontakt:
Dr. Stefanie Merker
Max-Planck-Institut für Neurobiologie
Öffentlichkeitsarbeit
Tel.: 089 - 8578 3514
Email: merker@neuro.mpg.de
Prof. Dr. Mark Hübener
Max-Planck-Institut für Neurobiologie
Email: mark@neuro.mpg.de

Dr. Stefanie Merker | Max-Planck-Institut
Weitere Informationen:
http://www.neuro.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften