Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verfolgungsjagd winziger Vehikel - Mikroskop zeigt Nanofähren auf dem Weg in die Zelle

20.07.2009
Nanopartikel sind nur Millionstel Millimeter groß und können aufgrund ihrer vielfältigen, oft noch unbekannten Eigenschaften ganz neuartige Produkte liefern.

In der medizinischen Therapie etwa sollen winzige Nanofähren Wirkstoffe oder auch Gene in Zellen schleusen. Ob solche Ansätze gelingen, zeigte im Test bislang allerdings nur der Erfolg - wenn etwa das transportierte Gen in der Zelle auf gewünschte Weise aktiv wurde.

Unter der Leitung des LMU-Physikochemikers Christoph Bräuchle konnte ein Forscherteam in Kooperation mit Privatdozent Dr. Christian Plank von der TU München nun aber eine hochempfindliche mikroskopische Technik einsetzen, die einzelne Nanopartikel auf ihrem Weg in die Zelle verfolgt - in Echtzeit sowie in hoher räumlicher und zeitlicher Auflösung. Untersucht wurden magnetische Nanopartikel, die unter anderem in der Krebstherapie zum Einsatz kommen könnten. Die hochempfindliche Methode soll künftig auch ein besseres Verständnis bereits bestehender Nanovektoren sowie die Entwicklung neuer Systeme erlauben. Die Studie ist die Titelgeschichte der aktuellen Ausgabe des Fachjournals "Journal of Controlled Release". (Journal of Controlled Release, 20. Juli 2009)

Nanopartikel sind so klein, dass viele Barrieren im Körper für sie kein Hindernis darstellen. Sie können sich auch über den Blutkreislauf im ganzen Körper verteilen. Deshalb sollen die synthetischen Teilchen in Zukunft Medikamente gezielt zum Krankheitsherd im Körper bringen. "Auch Gene ließen sich wohl auf diesem Weg transportieren", sagt Plank. "Damit könnten in der von Rückschlägen geplagten Gentherapie weitere Durchbrüche erzielt werden. Denn noch immer fehlt es in erster Linie am passenden Transporter." Bislang kamen vor allem Viren als Vehikel zum Einsatz, die aber auch in entschärftem Zustand unerwünschte Nebenwirkungen auslösen können.

Die Nanofähren dagegen würden maßgeschneidert produziert und könnten im günstigsten Fall, so die Hoffnung vieler Forscher und Ärzte, ihre genetische Fracht oder den Wirkstoff zielgerichtet und ohne Nebenwirkungen ans Ziel bringen. Für eine solche "Targeted Delivery" benötigen die Nanofähren aber eine Art Suchsystem, das sie zu den Zielstrukturen führt. Magnetische Teilchen werden etwa in der Krebstherapie erprobt: Sie könnten per Infusion verabreicht und dann über ein Magnetfeld zum Tumor dirigiert werden. Dort sollen sie dann gezielt in die Tumorzelle eindringen. Für eine mögliche Zulassung und etwa auch für die Dosisbestimmung muss aber bekannt sein, auf welchem Weg und wie effizient Nanopartikel im Körper transportiert und von den Tumorzellen aufgenommen werden.

Bislang fehlte jede Möglichkeit, die Nanopartikel auf ihrem Weg, insbesondere in die lebende Tumorzelle, zu verfolgen. Erst das Auftreten oder Ausbleiben der therapeutischen Wirkung zeigte, ob ein Ansatz Erfolg versprach oder nicht. "Das ist wie eine Black Box", sagt Bräuchle. "Man gibt vorne was rein und wartet ab, ob hinten was rauskommt. Was in der Zwischenzeit passiert, lässt sich nicht überprüfen." In seinem Arbeitskreis wurde nun die hochempfindliche Einzelmolekül-Fluoreszenzmikroskopie eingesetzt, um den Weg von Nanofähren zu verfolgen. Bei diesem hochempfindlichen Verfahren werden einzelne Partikel mit einem Farbstoff markiert, der wie eine "molekulare Lampe" den Weg der Partikel in die Zelle hinein sichtbar macht.

"Wir haben auf diese Weise magnetische Lipoplex-Nanopartikel verfolgt und ihren Transport in Form von Filmen aufgezeichnet", berichtet Anna Sauer, die Erstautorin der Studie. "Wir konnten die Partikel auf ihrem Weg in die Zelle mit hoher zeitlicher und räumlicher Auflösung in Echtzeit beobachten." Dabei ließen sich einzelne Phasen unterscheiden: Wie das Teilchen die Zellmembran erreicht, sich dort niederlässt und schließlich - eingeschlossen in ein Membranvesikel - in das Zellinnere gelangt. Dort bewegt sich das Vesikel ungerichtet und oft auch in ungewöhnlicher Weise, bis es von einem sogenannten Motorprotein aufgegriffen und schnell Richtung Zellkern transportiert wird, dem Zielort für das Gen.

Die einzelnen Etappen dieses Weges können die Forscher nun charakterisieren und detailliert beschreiben. "Das neue Verfahren hat auch Engpässe im Transport der Nanofähren offengelegt", berichtet Bräuchle. "So konnten wir etwa sehen, dass das Magnetfeld die Partikel nur außerhalb der Zellen dirigieren kann. Den Eintritt in die Zellen erleichtert es aber wider Erwarten nicht. Dank der neuen Einsichten können die bestehenden Nanofähren in Zukunft entsprechend optimiert und auch neue Systeme entwickelt werden." (suwe)

Die Arbeiten wurden im Rahmen der Exzellenzcluster Nanosystems Initiative Munich (NIM) und Center for Integrated Protein Science Munich (CIPSM) durchgeführt.

Publikation:
"Dynamics of magnetic lipoplexes studied by single particle tracking in living cells"
A.M. Sauer, K.G. de Bruin, N. Ruthardt, O. Mykhaylyk, C. Plank, C. Bräuchle,
Journal of Controlled Release, 20. Juli 2009
Ansprechpartner:
Professor Christoph Bräuchle
Department für Chemie und Biochemie der LMU
Tel.: 089 / 2180 - 77547
Fax: 089 / 2180 - 77548
E-Mail: christoph.braeuchle@cup.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.cup.uni-muenchen.de/pc/braeuchle/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie