Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vererblichen Formen des Brustkrebs auf der Spur

24.10.2013
Neben Mutationen in den Genen BRCA1/2 sind auch solche im PALB2-Gen für eine erhöhte Brustkrebsanfälligkeit verantwortlich.

Forschern vom Jenaer Leibniz-Institut für Altersforschung und der Universität Oulu in Finnland gelang der Nachweis, wie eine Mutation von PALB2 DNA-Schäden verursacht, obwohl die Zelle noch über eine intakte Kopie des Gens verfügt.


Der Chromosomensatz - die Gesamtheit aller Chromosomen einer Zelle - wird durch die Anzahl sowie Morphologie und Struktur der Chromosomen charakterisiert. Die Abbildung zeigt typische chromosomale Abweichungen peripherer Blutlymphozyten einer Patientin mit einer PALB2-Mutation.

Quelle: Prof. Robert Winqvist, Universität Oulu / Finnland

Die Verdopplung der DNA läuft in solchen Zellen beschleunigt ab, so dass dadurch vermehrt Fehler entstehen können. Aufgrund einer unzureichenden Schadensantwort kommt es zu einer erhöhten Chromosomen-Instabilität; ein Mechanismus, der für frühe Phasen der Brustkrebs-Entstehung verantwortlich ist. (Nat. Commun. 2013, doi: 10.1038/ncomms3578)

Mit rund 72.000 Neuerkrankungen jährlich ist Brustkrebs die mit Abstand häufigste Krebserkrankung bei Frauen in Deutschland. Eine erhöhte erbliche Prädisposition (Veranlagung) geht mit einer Vielzahl von Genen einher. In 5-10% der vererblichen Fälle wird sie mit einer Mutation der brustkrebsassoziierten Gene BRCA1 und BRCA2 in Verbindung gebracht, die durch Regulation der homologen Rekombination zum Erhalt der genomischen Stabilität beitragen und damit eine wichtige Rolle bei der Reparatur von DNA-Schäden spielen. Ein ebenso wichtiges Kandidaten-Gen ist PALB2; z.B. in Finnland sind bis zu 1% der Brustkrebsfälle auf PALB2-Mutationen zurückzuführen. Wie und über welchen Mechanismus die Erkrankungen entstehen, war bisher nicht bekannt.

Ein internationales Team um Dr. Helmut Pospiech vom Leibniz-Institut für Altersforschung - Fritz-Lipmann-Institut (FLI) in Jena und Prof. Robert Winqvist von der Universität Oulu in Finnland untersuchte jetzt mit Kooperationspartnern vom Universitätsklinikum Hamburg-Eppendorf und dem Rutgers Cancer Institute in New Jersey, USA, wie sich mutierte PALB2-Zellen bei Zellteilungsexperimenten verhalten.

„Für unsere Studien verwendeten wir Probenmaterial von Frauen, die eine PALB2-Mutation in sich trugen, mit der Besonderheit, dass ein Teil von ihnen bereits an Brustkrebs erkrankt war, während die anderen völlig gesund waren“, berichtet Dr. Pospiech, wissenschaftlicher Mitarbeiter in der Arbeitsgruppe von Prof. Frank Große am FLI sowie am Biochemischen Institut der Universität Oulu in Finnland. Von früheren Arbeiten wusste man, dass das PALB2-Protein an BRCA2 bindet und dessen Chromatin-Bindung stabilisiert, die für die Reparatur von Chromosomen-Brüchen wichtig ist. PALB2 steuert darüber hinaus bei der homologen Rekombination, einem Reparaturmechanismus der Zelle zur Vermeidung von DNA-Schäden, die Interaktion zwischen BRCA1 und BRCA2.

„Bei der mutierten Form fanden wir nur halb so viel PALB2-Protein in den Zellen vor, wie normalerweise vorkommen sollte“, erzählt Pospiech. Die Forscher konnten zeigen, dass es bei den mutierten Zellen zu einer Deregulierung der Replikation, der Verdopplung der DNA, kommt. „Von den circa 250.000 definierten Orten, an denen die Replikation starten kann, werden in der Regel nur etwa zehn Prozent tatsächlich benutzt. Der Rest dient als eine Art stille Reserve, um gegen Stress und andere Störfaktoren gewappnet zu sein“, so Pospiech weiter. Treten bei der Verdopplung Probleme auf, dann bleibt die Replikation stehen und fängt in der Nachbarschaft neu an. Dazu wird die „schlafende“ Reserve geweckt.

„Im Gegensatz zu den Kontrollzellen stellten wir bei den Zellen von Mutationsträgern fest, dass die Replikation doppelt so häufig gestartet wird und dadurch beschleunigt abläuft, jedoch die Replikation an vielen Stellen oft nicht bis zum Ende durchläuft; die DNA quasi wie mit heißer Nadel verdoppelt wird“, so der Biochemiker weiter. Mit fatalen Folgen, denn dadurch können vermehrt Fehler entstehen, da wichtige Kontrollmechanismen umgangen werden. So konnten die Forscher zeigen, dass bei der Replikation vermehrt auf die stille Reserve zurückgriffen wird, ohne dass dafür irgendeine äußere Störung oder Stress der Auslöser waren. „Damit besitzen die mutierten Zellen eine geringere Kapazität, um auf induzierten Replikationsstress zu reagieren, da sie bereits unter normalen Bedingungen am Limit fahren und der zur Schadensreparatur benötigte Sicherheitspuffer zum Teil schon aufgebraucht ist“.

Beim Zellwachstumsprozess prüfen diverse Kontrollpunkte, ob alle Prozesse ordnungsgemäß abgelaufen und eventuelle Schäden bereits entfernt worden sind, bevor die nächste Phase der Zellteilung gestartet wird. Fügt man den Zellen Schaden zu, dann zeigen die mutierten Zellen nur zu Beginn eine robuste DNA-Schadensantwort, können diese aber nur unzureichend aufrechterhalten. „Den mutierten Zellen geht bereits nach wenigen Stunden die Puste aus, so dass fehlerhafte Zellen freigegeben werden und letztendlich Chromosomen-Schäden auftreten“, unterstreicht Pospiech. Frisch isolierte Blutlymphozyten von Mutationsträgern weisen bereits viele Chromosomen-Anomalien auf, so dass die aufgezeigte Genom-Destabilisierung nicht nur in den untersuchten Zellkulturen, sondern auch in den Zellen der betroffenen Personen stattfindet. Wichtig ist hierbei, dass bereits der funktionelle Verlust einer Kopie des PALB2-Gens zu den beschriebenen Defekten führt.

Veränderungen der Anzahl und Struktur der Chromosomen treten in gealterten Zellen gehäuft auf; insbesondere die Entstehung von Tumoren im Alter ist häufig mit der Chromosomen-Instabilität verbunden. „Der von uns identifizierte Mechanismus zeigt eindringlich, dass die Geschwindigkeit der Zellteilung selbst zum Problem werden kann“, so Pospiech, „damit verbessern die Ergebnisse unser Verständnis zur Entstehung von chromosomaler Instabilität in alternden Zellen und der Entstehung von Krebs als dessen Folge“.

„Bei unseren Untersuchungen waren die Kontrollzellen häufig sehr homogen, während sich die Trägerzellen oft sehr variabel verhielten.“ Obwohl alle Patienten die gleiche PALB2-Mutation trugen, waren einzelne Schadensmerkmale (Phänotype) unterschiedlich stark ausgeprägt, so dass eine altersbedingte Anpassung denkbar wäre. Die Forscher möchten deshalb in einem nächsten Schritt untersuchen, ob die beschriebenen Replikationsfehler in Abhängigkeit vom Alter gehäuft auftreten, da mit dem Alter nicht nur die Verdopplung des Erbmoleküls fehleranfälliger wird, sondern auch die körpereigenen Reparaturtrupps der Zelle altern.

Die Forschungsergebnisse erscheinen online in der aktuellen Ausgabe der renommierten Fachzeitschrift Nature Communications.

Kontakt:
Dr. Kerstin Wagner
Leibniz-Institut für Altersforschung – Fritz-Lipmann-Institut (FLI)
Beutenbergstr. 11, 07745 Jena
Tel.: 03641-656378, Fax: 03641-656351, E-Mail: presse@fli-leibniz.de
Originalpublikation:
Nikkilä J, Parplys AC, Pylkäs K, Bose M, Huo Y, Borgmann K, Rapakko K, Nieminen P, Xia B, Pospiech H, Winqvist R. Heterozygous mutations in PALB2 cause DNA replication and damage response defects. Nat. Commun. 2013, doi: 10.1038/ncomms3578.

Hintergrundinfo

Lymphozyten sind zelluläre Bestandteile des Blutes. Sie umfassen die B-Zellen, T-Zellen und die natürlichen Killerzellen und gehören zu den sogenannten „weißen Blutkörperchen“ (Leukozyten). Bei Erwachsenen stellen die Lymphozyten etwa 20-50% der Leukozyten im peripheren Blut; außerhalb der blutbildenden Organe.

Die homologe Rekombination ist ein „Werkzeug“ der Zelle, um Genmutationen zu reparieren. Sie tritt bei allen Organismen auf, wenn homologe, doppelsträngige DNA-Abschnitte vorliegen; d.h. große Ähnlichkeiten in der Nucleotidsequenz beider DNA-Abschnitte vorhanden sind. Bei Doppelstrangbrüchen kann durch homologe Rekombination der Schaden in der DNA ausgebessert werden, indem die Information auf dem unbeschädigten DNA-Strang (Chromatid) als Vorlage zur Verdopplung der DNA benutzt wird.

Der Chromosomensatz jeder Spezies, so auch des Menschen, wird durch die Anzahl, Morphologie und Struktur der Chromosomen charakterisiert. Die innere Strukturierung der Chromosomen, die sich aus einer unterschiedlich dichten Faltung und Kontraktion des DNA-Moleküls und assoziierter Proteine sowie aus den unterschiedlichen Konzentrationen der vier DNA-Basen (Adenin, Guanin, Cytosin und Thymin) ergibt, lässt sich durch spezifische Färbetechniken, die Chromosomen-Bänderungsverfahren, darstellen und analysieren.

Das Leibniz-Institut für Altersforschung – Fritz-Lipmann-Institut (FLI) in Jena ist das erste deutsche Forschungsinstitut, das sich seit 2004 der biomedizinischen Altersforschung widmet. Über 330 Mitarbeiter aus 30 Nationen forschen zu molekularen Mechanismen von Alternsprozessen und alternsbedingten Krankheiten. Näheres unter http://www.fli-leibniz.de.

Die Leibniz-Gemeinschaft verbindet 86 selbständige Forschungseinrichtungen, deren Ausrichtung von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Raum- und Sozialwissenschaften bis zu den Geisteswissenschaften reicht. Leibniz-Institute bearbeiten gesellschaftlich, ökonomisch und ökologisch relevante Fragestellungen. Sie betreiben erkenntnis- und anwendungsorientierte Grundlagenforschung, unterhalten wissenschaftliche Infrastrukturen und bieten forschungsbasierte Dienstleistungen an. Die Leibniz-Gemeinschaft setzt Schwerpunkte im Wissenstransfer in Richtung Politik, Wissenschaft, Wirtschaft und Öffentlichkeit. Die Institute pflegen intensive Kooperationen mit Hochschulen, der Industrie und anderen Partnern im In- und Ausland und unterliegen einem maßstabsetzenden transparenten und unabhängigen Begutachtungsverfahren. Aufgrund ihrer gesamtstaatlichen Bedeutung fördern Bund und Länder die Institute der Leibniz-Gemeinschaft gemeinsam. Die Leibniz-Institute beschäftigen rund 16.500 Personen, darunter 7.700 Wissenschaftlerinnen und Wissenschaftler. Der Gesamtetat der Institute liegt bei 1,4 Milliarden Euro. Näheres unter http://www.leibniz-gemeinschaft.de.

Dr. Kerstin Wagner | idw
Weitere Informationen:
http://www.fli-leibniz.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Entzündung weckt Schläfer

29.03.2017 | Biowissenschaften Chemie

Mittelstand 4.0-Kompetenz­zentrum Stuttgart gestartet

29.03.2017 | Wirtschaft Finanzen

Energieträger: Biogene Reststoffe effizienter nutzen

29.03.2017 | Ökologie Umwelt- Naturschutz