Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verdoppelung des Genoms im Griff

12.12.2008
Freiburger Wissenschaftler entdecken wichtige Zellregulation

Freiburger Wissenschaftler haben eine neue Art der Regulation in Zellen entdeckt, bei der ein regulatorischer Faktor räumlich von seinem Zielort getrennt wird, jedoch im selben Abteil der Zelle verbleibt. Um sich zu vermehren, muss jede Zelle ihr Erbgut verdoppeln und auf jede Tochterzelle verteilen.

Egal ob ein Chromosom, wie in vielen Bakterien, oder viele Chromosomen wie in menschlichen Zellen - der Beginn der Replikation, der Erbgutverdopplung, muss exakt kontrolliert werden. Wichtig ist ebenfalls, dass Zellen nur einmal die Replikation beginnen und nicht mehrfach. Eine erneute Initiation kann zur Entstehung von Krebs führen oder gar zum Zelltod. Der DnaA Regulatorsfaktor bindet an eine Region auf dem Bakterinen-Chromosom. Er übt dort eine Schlüsselrolle bei der Initiation aus. Nach seiner Aktivität muss er jedoch ausgeschaltet werden, um eine erneute Verdoppelung auszuschließen.

Zusammen mit einem französischen Team hat die Gruppe um Prof. Peter Graumann an der Fakultät für Biologie entdeckt, dass die DnaA Moleküle zunächst an die Initiatorregion auf dem Chromosom binden, nach der Initiation jedoch an die Verdopplungsmaschinerie angehängt werden - die verdoppelten Initiatorregionen aus dem Chromosom werden von der Maschinerie wegbewegt, so dass DnaA nicht mehr an den Ort seiner Aktivität binden kann. Auch das Bindeglied zwischen DnaA und der Maschinerie konnte das deutsch-französische Team beschreiben.

Durch die räumliche Anheftung wird DnaA in der Zellmitte festgehalten, wo sich der Verdopplungsapparat befindet, während die verdoppelten Chromosomenregionen in entgegen gesetzte Richtung zu den Zellpolen der stäbchenförmigen Bakterienzellen bewegt werden. Dadurch nutzt das kleine Bakterium, das nicht, wie höhere Zellen, mehrere Unterabteilungen in der Zelle besitzt, geschickt den Platz in der Zelle aus, um einen Regulator in Schach zu halten.

Diese grundlegenden Forschungen zeigen neue Prinzipien der Regulation in Zellen auf und dienen als Modell, wie in höheren Zellen die Verdopplung des Erbguts gesteuert wird, die in diesem Fall noch viel komplizierter ist, als dies in Bakterien der Fall ist. Aus dem Modell Bakterienzelle, so hoffen die Mikrobiologen, lassen sich in Zukunft noch weitere fundamentale zelluläre Prozesse aufdecken.

Originalveröffentlichung: Clarisse Defeu Soufo, Hervé Joël Defeu Soufo, Marie-Françoise Noirot-Gros, Astrid Steindorf, Philippe Noirot2, Peter L. Graumann: Cell Cycle-Dependent Spatial Sequestration of the DnaA Replication Initiator Protein in Bacillus subtilis, Developmental Cell, Volume 15, Issue 6, 935-941, 9 December 2008

Kontakt:
Prof. Dr. Peter Graumann
Institut für Biologie II/Mikrobiologie
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-2630
Fax: 0761/203-2773
E-Mail: peter.graumann@biologie.uni-freiburg.de

Rudolf-Werner Dreier | idw
Weitere Informationen:
http://www.uni-freiburg.de/

Weitere Berichte zu: Bakterien Bakterienzelle Cell Chemische Biologie Chromosom DnaA Erbgut Verdoppelung Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics