Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verbesserte Wirkstoffkombinationen gegen die Antibiotikakrise

02.05.2018

Kieler Forschungsteam untersucht erstmals systematisch, wie sich vorhandene Antibiotika am wirkungsvollsten kombinieren lassen

Antibiotika-resistente Krankheitskeime könnten sich laut Aussage der Weltgesundheitsorganisation WHO innerhalb weniger Jahre zu einer der dramatischsten Gefahren für die öffentliche Gesundheit entwickeln. Während das Arsenal an wirksamen antibakteriellen Medikamenten weiter schrumpft, geht die Entwicklung neuer Wirkstoffe nur schleppend voran. Zudem kann die schnelle Evolution von Antibiotika-Resistenzen auch neue Medikamente innerhalb kurzer Zeit wirkungslos werden lassen.


Am Beispiel des Krankheitserregers Pseudomonas aeruginosa entwickelte Dr. Camilo Barbosa ein Modell zur Optimierung von Antibiotika-Kombinationen.

Foto: Christian Urban, Universität


Im Labor konfrontierte das Forschungsteam den Krankheitskeim mit 39 verschiedenen antibiotischen Wirkstoffkombinationen.

Foto: Christian Urban, Universität Kiel

Wissenschaftlerinnen und Wissenschaftler hoffen in dieser bedrohlichen Situation, die Wirksamkeit der vorhandenen Antibiotika durch die gezielte Kombination bestimmter Wirkstoffeigenschaften erhalten und verbessern zu können.

Ein internationales Forschungsteam um die Arbeitsgruppe Evolutionsökologie und Genetik der Christian-Albrechts-Universität zu Kiel (CAU) legt nun erstmals eine systematische, experimentelle Analyse vor, die die Wirksamkeit verschiedener Antibiotika-Kombinationen gegen den Krankheitserreger Pseudomonas aeruginosa beschreibt.

Dabei fanden die Forschenden heraus, dass bestimmte Eigenschaften einer Antibiotika-Kombination entscheidend für die Effizienz der Behandlung sind. Ihr neuartiges Modell zur „Wirksamkeit von Antibiotikakombinationen“ (Englisch: „ACE – Antibiotic Combination Efficacy“) veröffentlichten die Forschenden in der aktuellen Ausgabe der Fachzeitschrift PLOS Biology.

Um die Auswirkungen auf den Krankheitserreger zu untersuchen, führte Dr. Camilo Barbosa, wissenschaftlicher Mitarbeiter in der Arbeitsgruppe Evolutionsökologie und Genetik an der CAU, Evolutionsexperimente mit 39 Kombinationen von zwölf verschiedenen Wirkstoffen durch.

Bis zu zehn Tage setzte er die Bakterien den verschiedenen Medikamentenpaaren aus und beobachtete das Wachstum der Bakterienkulturen und mögliche Resistenzbildungen im Verlauf der Zeit. In insgesamt 1600 einzelnen Evolutionsexperimenten konnte er so systematisch die Wirkung der Medikamentenkombinationen auf die Bakterien und die dabei stattfindenden Interaktionen zwischen den Wirkstoffen dokumentieren.

Anschließend wendete er eine Kombination verschiedener statistischer Verfahren an, um die evolutionäre Anpassungsfähigkeit der Keime – das wichtigste Hindernis für den Erfolg herkömmlicher Kombinationstherapien – auch theoretisch vorhersagen zu können.

Auf diesem Wege konnte Barbosa gemeinsam mit seinen Kollegen zwei Hauptfaktoren identifizieren, die für eine verbesserte Wirksamkeit der Kombinationstherapie ausschlaggebend sind: Einerseits erwiesen sich sogenannte synergistische Effekte zwischen den Wirkstoffen als vielversprechend, da sie gegenseitig ihre Wirkung verstärken und so für eine gesteigerte Ausrottung des Krankheitserregers sorgen.

Zusätzlich ist die Nutzung der sogenannten kollateralen Sensitivität von Vorteil, bei der die Abwehr des Bakteriums gegen einen Wirkstoff es zugleich empfindlich für das zweite Medikament macht. Dieses Phänomen hatte Barbosa gemeinsam mit Kolleginnen und Kollegen erst kürzlich in einer Vorgängerarbeit genauer beschrieben. Eine Antibiotika-Paarung, die eine synergistische Wirkung mit dem Effekt der kollateralen Sensitivität vereint, ist demnach am effektivsten und verspricht den größten Behandlungserfolg: Im Labor ließen sich die Bakterien so am besten dezimieren, während sie zugleich eine drastisch reduzierte Resistenzbildung zeigten.

„Mit dem ACE-Modell beschreiben wir erstmals einen vielversprechenden Weg, um die Eigenschaften von Medikamentenpaaren besonders wirkungsvoll zu kombinieren. So wollen wir dabei helfen, die Bekämpfung bakterieller Infektionen künftig gezielter und nachhaltiger zu gestalten“, betont Professor Hinrich Schulenburg, Leiter der Arbeitsgruppe und Sprecher des Kiel Evolution Center (KEC). Die jetzt vorgelegte Studie zeige zudem erneut, dass ein erfolgreicher Kampf gegen Antibiotikaresistenzen nur gelingen könne, wenn die zugrundeliegenden evolutionären Prinzipien in die Behandlungsstrategie einbezogen würden, so Schulenburg weiter.

In den Experimenten mit Pseudomonas aeruginosa zeigten sich diese positiven Effekte am deutlichsten bei der Kombination von Antibiotika der Wirkstoffklassen der Penicilline und Aminoglykoside. In den Laboruntersuchungen bewiesen sie eine ausgeprägte gegenseitige Verstärkung ihrer Wirkung auf den Keim, während die kombinierte Anwendung die Resistenzbildung des Keims hemmte. So konnte das Kieler Forschungsteam aufzeigen, wie sich durch eine optimierte Wirkstoffkombination zugleich der Bakterienbefall und die Wahrscheinlichkeit der Resistenzbildung im Falle einer Infektion drastisch mindern lassen. In weiteren Forschungsarbeiten wollen die Wissenschaftlerinnen und Wissenschaftler nun klären, ob diese beiden für den Behandlungserfolg entscheidenden Faktoren auch auf andere Krankheitserreger und insbesondere die Behandlung von Menschen übertragbar sind. Langfristiges Ziel der Forschenden des KEC ist es, alternative und nachhaltige Strategien für den klinischen Behandlungsalltag zu entwickeln und so mögliche Wege aus der Antibiotikakrise aufzuzeigen.

Originalarbeit:
Camilo Barbosa, Robert Beardmore, Hinrich Schulenburg* and Gunther Jansen* (2018): Antibiotic combination efficacy (ACE) networks for a Pseudomonas aeruginosa model PLOS Biology * Shared senior authorship.
http://dx.doi.org/10.1371/journal.pbio.2004356


Bilder stehen zum Download bereit:
http://www.uni-kiel.de/download/pm/2018/2018-127-1.jpg
Bildunterschrift: Am Beispiel des Krankheitserregers Pseudomonas aeruginosa entwickelte Dr. Camilo Barbosa ein Modell zur Optimierung von Antibiotika-Kombinationen.
Foto: Christian Urban, Universität Kiel

http://www.uni-kiel.de/download/pm/2018/2018-127-2.jpg
Bildunterschrift: Im Labor konfrontierte das Forschungsteam den Krankheitskeim mit 39 verschiedenen antibiotischen Wirkstoffkombinationen.
Foto: Christian Urban, Universität Kiel

http://www.uni-kiel.de/download/pm/2018/2018-127-3.jpg
Bildunterschrift: Die Kieler Forschenden untersuchten die Wirkung der Medikamentenpaare auf das Bakterienwachstum und die Resistenzbildung des Keims.
Foto: Christian Urban, Universität Kiel

Kontakt:
Prof. Hinrich Schulenburg
Sprecher „Kiel Evolution Center“ (KEC), CAU Kiel
Tel.: 0431-880-4141
E-Mail: hschulenburg@zoologie.uni-kiel.de

Weitere Informationen:
Arbeitsgruppe Evolutionsökologie und Genetik, Zoologisches Institut, CAU Kiel:
http://www.uni-kiel.de/zoologie/evoecogen

Forschungszentrum „Kiel Evolution Center“, CAU Kiel:
http://www.kec.uni-kiel.de


Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Text: Christian Urban
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de, Twitter: www.twitter.com/kieluni
Facebook: www.facebook.com/kieluni, Instagram: www.instagram.com/kieluni

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel
Weitere Informationen:
http://www.uni-kiel.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Embryonalentwicklung: Wie entstehen aus Zellen Gliedmaßen?
02.05.2018 | Humboldt-Universität zu Berlin

nachricht Neue Tierart in der Nordsee
02.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stagediving mit Biomolekülen verbessert optische Mikroskopie

Physiker aus Dresden und Würzburg haben eine neuartige Methode für die optische Mikroskopie entwickelt. Mit Hilfe biologischer Motoren und einzelner Quantenpunkte erzeugen sie ultra-hochaufgelöste Bilder.

Die Auflösung konventioneller optischer Mikroskopie ist durch das fundamentale physikalische Prinzip der optischen Beugung auf etwa die halbe Wellenlänge des...

Im Focus: Stagediving with biomolecules improves optical microscopy

Physicists from Dresden and Würzburg have developed a novel method for optical microscopy. Using biological motors and single quantum dots, they acquire ultra-high-resolution images.

The resolution of conventional optical microscopy is limited by the fundamental physical principle of diffraction to about one half of the wavelength of the...

Im Focus: DNA-Kopierer arbeitet auch als Schredder

Ein internationales Forscherteam hat in den Kraftwerken der Zelle, den Mitochondrien, eine unerwartete Entdeckung gemacht: Ein Enzym, das dort für die Vervielfältigung der DNA zuständig ist, kann zusätzlich defekte DNA abbauen. Diese Doppelfunktion lässt sich eventuell für die Therapie bestimmter Formen der Epilepsie nutzen. An der Studie unter Federführung der Universität Bonn waren auch Forscher der Universitäten Cambridge und Köln maßgeblich beteiligt. Die Ergebnisse erscheinen nun in der renommierten Fachzeitschrift Nature Communications.

Mitochondrien sind Kraftwerke im Miniformat: Sie erzeugen Energie und sorgen so dafür, dass die Zellen ihre Funktionen erfüllen können. Die meisten Zellen...

Im Focus: Einstein-Podolsky-Rosen-Paradoxon erstmals in Vielteilchensystem beobachtet

Physiker der Universität Basel haben das quantenmechanische Einstein-Podolsky-Rosen Paradoxon erstmals in einem System aus mehreren hundert miteinander wechselwirkenden Atomen beobachtet. Das Phänomen geht auf ein berühmtes Gedankenexperiment aus dem Jahr 1935 zurück. Es erlaubt, präzise Vorhersagen für Messungen zu machen und könnte in neuartigen Sensoren und Abbildungsverfahren für elektromagnetische Felder Verwendung finden. Das berichten die Forscher in der Fachzeitschrift «Science».

Wie präzise kann man die Ergebnisse von Messungen an einem physikalischen System vorhersagen? In der Welt der kleinsten Teilchen, die den Gesetzen der...

Im Focus: Einstein-Podolsky-Rosen paradox observed in many-particle system for the first time

Physicists from the University of Basel have observed the quantum mechanical Einstein-Podolsky-Rosen paradox in a system of several hundred interacting atoms for the first time. The phenomenon dates back to a famous thought experiment from 1935. It allows measurement results to be predicted precisely and could be used in new types of sensors and imaging methods for electromagnetic fields. The findings were recently published in the journal Science.

How precisely can we predict the results of measurements on a physical system? In the world of tiny particles, which is governed by the laws of quantum...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Save the date: Forum European Neuroscience – 07. bis 11. Juli 2018 in Berlin

02.05.2018 | Veranstaltungen

Diabetes Kongress 2018: Ernährungsmodelle im Fokus – weniger Fett oder weniger Kohlenhydrate?

30.04.2018 | Veranstaltungen

89. HNO-Kongress: Immuntherapie als Hoffnung bei Kopf- und Halstumoren (9. bis 11. Mai, Lübeck)

30.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lufthülle lässt Schiffe leichter durchs Wasser gleiten

02.05.2018 | Physik Astronomie

Risiko Wasserstoffversprödung bewerten: neue Simulation zur Kaltrissbildung bei hochfesten Stählen

02.05.2018 | Materialwissenschaften

Verbesserte Wirkstoffkombinationen gegen die Antibiotikakrise

02.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics