Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

UZH-Forscher sagen Aktivität menschlicher Gene voraus

18.12.2015

Genetisch identische Schwesterzellen verhalten sich nicht immer gleich. Bis anhin schrieb man dies zufälligen molekularen Reaktionen zu. Nun haben Systembiologen der Universität Zürich eine bisher übersehene Auswirkung der räumlichen Trennung in Zellkern und Zellplasma entdeckt. Gestützt auf ihre Erkenntnis können sie erstmals anhand von Supercomputern die Genaktivität in einzelnen menschlichen Zellen voraussagen.

Genetisch identische Zellen verhalten sich nicht immer gleich. Dafür verantwortlich, so die akzeptierte These, sind zufällige molekulare Prozesse – bekannt als zufälliges Rauschen. Diese Annahme wurde über Jahrzehnte durch zahlreiche Experimente und theoretische Modelle untermauert.

Nun haben Systembiologen der Universität Zürich eine folgenschwere Entdeckung gemacht: Die räumliche Trennung der menschlichen Zelle in Zellkern und Zellplasma schafft eine Art passiven Filter. Dieser unterdrückt das Zufallsrauschen und ermöglicht es menschlichen Zellen, die Aktivität einzelner Gene genau zu steuern.

Mehr Zufälligkeit im Zellkern entdeckt

Obwohl die Beobachtungen von Lucas Pelkmans und seinem Team anfänglich der bisherigen Lehrmeinung widersprachen, zeigte sich ihnen auf den zweiten Blick die fehlende Erklärung. Während der Aktivierung von Genen wird die in der DNS gespeicherte genetische Information in Boten-RNS abgeschrieben.

«Wir konnten die Boten-RNS im Zellplasma perfekt vorhersagen und fanden im Kern weit mehr Zufälligkeit», erklärt Nico Battich, Mitautor und Doktorand am Institut für Molekulare Biologie. «Man könnte sich den Zellkern als einen lecken Eimer vorstellen, der die Boten-RNS einerseits zurückhält, aber andererseits ihren verzögerten und gleichmässigen Ausfluss ermöglicht. Dadurch wird die Aktivität von Genen im Zellplasma äusserst robust gegenüber dem Zufallsrauschen während der Herstellung der Boten-RNS im Zellkern.»

Kleinste physiologische Details ersichtlich

Dank ihrer neuen Methode konnten die Zürcher Forscher als Erste so viele menschliche Gene untersuchen. Es ist ihnen gelungen, jedes einzelne Molekül zu erkennen, das von aktiven Genen produziert wird. «Früher konnte man nur wenige Gene untersuchen und oft mussten Forscher diese gentechnisch verändern», sagt Doktorand Thomas Stoeger. «Wir erkannten, dass sich die Aktivität von Genen zwischen einzelnen Zellen stark unterscheidet, doch gleichzeitig konnten wir die Aktivität für jede einzelne Zelle vorhersagen, indem wir mit mikroskopischen Farbstoffen kleinste physiologische Details der Zellen sichtbar machten».

Die Erkenntnisse der Zürcher Grundlagenforscher können in die verschiedensten Gebiete einfliessen: «Beispielsweise in die Evolutionsbiologie, in der die räumliche Unterteilung von Zellen ein Meilenstein zur Entwicklung intelligenter Lebensformen markiert. Ebenso in die Biotechnologie, wo eine genaue Steuerung künstlicher Gene gewünscht ist, bis hin zur Humanmedizin – sollte es gelingen vorherzusagen, welche einzelnen bösartigen Zellen auf Medikamente ansprechen», schliesst Prof. Lucas Pelkmans.

Literatur:
Nico Battich, Thomas Stoeger, Lucas Pelkmans. Control of Transcript Variability in Single Mammalian Cells. Cell. December 16, 2015. Doi:10.1016/j.cell.2015.11.018

Kontakt:
Prof. Lucas Pelkmans
Institut für Molekulare Biologie
Universität Zürich
Tel. +41 44 635 31 23
E-Mail: lucas.pelkmans@imls.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch/index.html

Melanie Nyfeler | Universität Zürich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie