Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Am Ursprung des Wachstums: Tübinger Biologen beobachten Pflanzenhormone bei der Arbeit

09.08.2013
Wenn man verstehen möchte, wie Pflanzen wachsen, dann muss man sich nicht nur auf die Ebene der Moleküle, sondern auf die der Atome hinabbegeben.

Michael Hothorn vom Friedrich-Miescher-Laboratorium der Max-Planck-Gesellschaft in Tübingen tut das: Gemeinsam mit seiner Arbeitsgruppe untersucht er bis ins atomare Detail, wie Pflanzenhormone und ihre Rezeptoren zusammenwirken. In der aktuellen Ausgabe des Fachmagazins Science berichten die Forscher nun, das pflanzliche Membranrezeptoren ein Helfereiweiß benötigen, um ein wichtiges Wachstumsignal zu erkennen und über die Zellmembran zu leiten.


Aktivierung das pflanzlichen Brassinosteroid-Signalweges. (Links) Röntgenstrukturmodell der LRR-Domäne des Rezeptors BRI1 (in blau). Im ersten Schritt bindet BRI1 das Steroidhormon (in gelb) in einer Tasche an seiner Oberfläche. Danach kann dann die kleinere LRR-Domäne des Hilfsrezeptors (in orange) gebunden werden, das Hormon hält die beiden Eiweisse wie ein Klebstoff zusammen (Rechts). Julia Santiago

Der pflanzliche Steroidrezeptor BRI1 zählt zur großen Familie der LRR-Rezeptorkinasen und steht somit exemplarisch für ein Wirkprinzip, das in der gesamten Pflanzenwelt verbreitet ist. "Die Mehrzahl der pflanzlichen Membranrezeptoren zählt zu dieser Familie - bei Algen ebenso wie bei höheren Pflanzen", erläutert Michael Hothorn. Wie alle Membranrezeptoren erfüllen die LRR-Rezeptorkinasen drei Aufgaben: Sie nehmen molekulare Signale auf, die von außen an die Zelle dringen; sie leiten die Information durch die Zellmembran hindurch; und letztlich veranlassen sie das Zellinnere zu einer Antwort auf das äußere Signal. Im Vergleich zu tierischen oder bakteriellen Rezeptoren, die völlig anders aufgebaut sind, sind die pflanzlichen "Empfängermoleküle" jedoch noch recht wenig erforscht.

Wie Michael Hothorn und seine Mitarbeiter nun herausgefunden haben, kann BRI1 das Steroidsignal nicht alleine erkennen und über die Membran leiten. "Bereits beim Empfang des Hormonsignals ist ein zweiter Membranrezeptor beteiligt", erläutert der Tübinger Biologe. Dass dieses als SERK1 bezeichnete Protein für die Wirkung des Wachstumshormons unerlässlich ist, war bereits zuvor bekannt - überrascht waren die Forscher jedoch davon, dass SERK1 bereits ganz zu Beginn des Signalweges ins Spiel kommt und quasi als Helfereiweiß fungiert. Wie die Röntgenstrukturbilder von Julia Santiago, der Erstautorin der Veröffentlichung, zeigen, liegt das Steroidhormon wie ein doppelseitiges Klebeband zwischen den beiden Rezeptoren und bringt sie so in unmittelbare Nähe zueinander. Dadurch können auch die auf der Membraninnenseite liegenden Teile der Rezeptoren miteinander interagieren und eine bereits bekannte Signalkaskade anschalten.

Der Baukasten der Natur

Die bisherigen Analysen deuten darauf hin, dass BRI1 mit mindestens drei unterschiedlichen Hilfsrezeptoren zusammenarbeiten kann, um Wachstum und Entwicklung der Pflanze zu steuern. Umgekehrt kann das Helfereiweiß SERK1 mit mehreren unterschiedlichen Rezeptoren zusammenkommen, unterschiedliche Liganden erkennen und dann unterschiedliche Wirkungen entfalten. Die Wirkweise der LRR-Rezeptorkinasen folgt somit dem Baukastenprinzip: Allein die Neukombination bereits vorhandener Strukturen reicht aus, um eine große Vielfalt an Funktionen abzudecken.

Wie die Röntgenstrukturaufnahmen zeigen, wird für den Kontakt mit BRI1 und Steroidhormon nur rund ein Zehntel der zugänglichen Fläche von SERK1 benötigt - der Rest steht für die Interaktion mit anderen Rezeptoren zur Verfügung. "Es muss für die Pflanzen ein Vorteil gewesen sein, diese verschiedenen Funktionen in einem Hilfsrezeptor zu bündeln", ist Michael Hothorn überzeugt. Viel einfacher wäre es aus evolutionärer Sicht gewesen, das Gen, das für den Hilfsrezeptor codiert, immer wieder zu verdoppeln, die Kopien unabhängig voneinander weiterzuentwickeln und so die verschiedenen Funktionen getrennt zu halten. Hothorn erwartet daher, dass die Bündelung durchaus ihren Grund hat:

"Die verschiedenen Signalwege beeinflussen sich auf diese Weise gegenseitig", vermutet er. Denn ein Hilfsrezeptor, der gerade einen Signalweg anstößt, kann nicht gleichzeitig einen zweiten Signalweg aktivieren. Solche Wechselwirkungen kennt man bislang hauptsächlich auf der Ebene der Transkription - ganz am Ende der Signalkette. Ob die Wechselwirkung auf Rezeptorebene tatsächlich für die Steuerung von Wachstums- oder Stoffwechselprozessen genutzt wird, möchte Hothorn in weiteren Forschungsprojekten klären.

Alternative zur Genmanipulation von Nutzpflanzen

Die atomaren Modelle, die die Tübinger Forscher von den Rezeptor-Interaktionen erstellen, könnten auf lange Sicht auch der Pflanzenzucht neue Wege weisen. "Wir können nun voraussagen, welche Mutationen welche Wirkung auf die Rezeptorfunktion haben", erläutert Michael Hothorn einen Aspekt seiner Arbeit, der auch im Science-Artikel anklingt. Außerdem erlauben die Modelle es, Wirkstoffe zu entwerfen, die die Wirkung des jeweiligen Hormons imitieren oder blockieren. Solche Designermoleküle sind vor allem für die Grundlagenforschung an Pflanzen dringend nötig, aber sie könnten langfristig auch zur Kontrolle des Wachstums von Nutzpflanzen eingesetzt werden.

Quelle:
Julia Santiago, Christine Henzler, Michael Hothorn
Molecular mechanism for plant steroid receptor activation by somatic embryogenesis co-receptor kinases

Science Express August 9, 2013

Nadja Winter | Max-Planck-Institut
Weitere Informationen:
http://www.fml.tuebingen.mpg.de/de/hothorn-group.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Immunabwehr ohne Kollateralschaden
23.01.2017 | Universität Basel

nachricht Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens
23.01.2017 | Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie