Ursachen für erfolgreiche Anpassung von HIV-1 an Menschen

Diese erfolgreiche Anpassung und hohe Infektiösität des sogenannten HIV-1 M-Stammes beruht unter anderem auf der Funktion des Virusproteins Vpu. In der renommierten Fachzeitschrift Cell Host & Microbe erschien jetzt die Studie, an der Michael Schindler vom Hamburger Heinrich-Pette-Institut sowie Forscherinnen und Forscher um Frank Kirchhoff (Universität Ulm) beteiligt waren (Sauter, Schindler, Specht et al. (2009), doi.10.1016/j.chom.2009.10.004).

Die HIV-1 Infektion des Menschen gehört zu den mehr als 200 bisher bekannten Zoonosen, bei denen ein Erreger erfolgreich aus dem Tierreich auf den Menschen übertreten konnte. Übertritte von potentiellen Erregern auf den Menschen erfolgen ständig, sind aber meist ohne Folgen, da das menschliche Immunsystem Schutzmechanismen entwickelt hat. Diese Wirtsbarrieren müssen die Erreger durch Mutationen und andere Anpassungsvorgänge überwinden.

Der AIDS-Erreger HIV-1 musste sich unter anderem an bestimmte Proteine anpassen, die die Freisetzung neu gebildeter Viren verhindern. „Wir wissen, dass vor allem das zelluläre Protein Tetherin eine wichtige Barriere beim Übertritt von HIV-1 auf den Menschen darstellte. Tetherin verhindert die Freisetzung neu gebildeter Viren aus infizierten Zellen, in dem es die Virusnachkommen an die Zellmembran „klebt“ und so deren Abknospung unterdrückt.

Eine zweite Barriere ist der CD4-Rezeptor, der sich auch auf der Oberfläche infizierter Zellen befindet. Wird CD4 während der HI-Virusvermehrung nicht erfolgreich abgebaut, sinkt auch hierdurch die Infektiösität der Viren dramatisch“, erklärt Schindler. Um gegen diese Barrieren anzugehen, besitzen HI-Viren und die nahe verwandten SI-Viren der Affen zwei Virusproteine mit überlappender Funktion. Sie heißen Vpu und Nef. Bei SIV Infektionen von Schimpansen schaltet das virale Nef-Protein die „Tetherin-Barriere“ aus. Doch welches virale Protein übernahm diese Rolle bei HIV-1 und ermöglichte so eine erfolgreiche Übertragung auf Menschen?

„Virales Nef kann Tetherin auf menschlichen Zellen nicht ausschalten, stattdessen hat das Vpu-Protein diese Rolle beim HIV-1 M-Stamm sehr effizient übernommen. Zusätzlich baut dieses Vpu den CD4 Rezeptor erfolgreich ab und überwindet so eine zweite Barriere“, fasst Michael Schindler zusammen. Im Gegensatz dazu sind die Vpu-Proteine der anderen HIV-1 Stämme entweder schwache Tetherin-Gegenspieler oder nicht dazu in der Lage, den CD4 Rezeptor auszuschalten. Dies könnte erklären, warum sich nur der HIV-1 M-Stamm weltweit verbreitet hat und für die AIDS-Pandemie verantwortlich ist.

Die Publikation:
Daniel Sauter, Michael Schindler, Anke Specht et al., Tetherin-driven adaptation of Vpu and Nef function and the evolution of pandemic and nonpandemic HIV-1 strains. Cell Host & Microbe (2009), doi:10.101016/j.chom.2009.10.004
Für Rückfragen:
Dr. Angela Homfeld; Pressestelle Heinrich-Pette-Institut
Tel. 040/48051-108, Fax -103; E-Mail angela.homfeld@hpi.uni-hamburg.de

Media Contact

Dr. Angela Homfeld idw

Weitere Informationen:

http://www.hpi-hamburg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer