Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ursache vieler Lymphome geklärt – Grundlage für revolutionäre Therapie geschaffen

09.07.2015

Professor Dr. Michael Pfreundschuh, Direktor der Klinik für Innere Medizin I - Onkologie, Hämatologie, Klinische Immunologie und Rheumatologie präsentierte am Montag, 06.07.2015, im Rahmen einer Pressekonferenz im Universitätsklinikum des Saarlandes in Homburg Forschungsergebnisse seiner Arbeitsgruppe zur Entstehung von Lymphomen sowie einen erfolgversprechenden Therapieansatz, das sogenannte „reverse targeting“.

Es handelt sich um den ersten Therapieansatz in der Geschichte der Krebstherapie, mit dem ausschließlich die bösartigen Zellen und nicht die anderen Zellen des Patienten angegriffen werden. Die Wirksamkeit dieses neuen Ansatzes wurde im Reagenzglas und am Tiermodell bestätigt.


Professor Dr. Michael Pfreundschuh

UKS

Schon lange stand die Hypothese im Raum, dass bösartige Erkrankungen der B-Lymphozyten (hierzu gehören viele Lymphome, Plasmozytome und die chronischen lymphatischen Leukämien) dadurch entstehen, dass bestimmte Substanzen vom Immunsystem erkannt werden, also als Antigene eine Immunantwort stimulieren.

Dies geschieht dadurch, dass die Antigene an den Antigenrezeptor (ein Antikörpermolekül) auf der Oberfläche der spezifischen B-Zellen (einer Unterform der weißen Blutkörperchen) binden und danach zusammen ins Innere der B-Zelle transportiert werden. Durch diese chronische Antigenstimulation kommt es zu einer vermehrten Proliferation und Zellteilung der B-Zellen, und da mit jeder Zellteilung die Entstehung eines bösartigen Zellklons steigt, kommt es nach Jahren der Stimulation durch ein Antigen letztendlich zur Entstehung eines Lymphoms.

Das Problem der „Hypothese der chronischen Antigenstimulation“ lag jedoch darin, dass die hierfür verantwortlichen Substanzen nicht bekannt waren. Der Arbeitsgruppe von Prof. Pfreundschuh ist es jetzt gelungen, die verantwortlichen Substanzen, also die jeweiligen Antigene für viele unterschiedliche Lymphomarten zu identifizieren. Überraschend dabei war, dass bei fast allen Lymphomerkrankungen ein Antigen vorherrscht.

In den meisten Fällen handelt es sich dabei um eine veränderte körpereigene Substanz, also ein Auto (Selbst)-Antigen, in einem Teil der Fälle wird die veränderte körpereigene Substanz vererbt, und gesunde Träger dieser veränderten körpereigenen Substanzen haben ein erhöhtes Risiko, an einem Lymphom zu erkranken, da sie seit Geburt diese veränderte körpereigene Substanz haben, die dann chronisch das Immunsystem dieser Personen stimuliert.

Das Vorherrschen eines oder zweier Autoantigene bei jeder einzelnen Untergruppe von Lymphomen hat sich die Arbeitsgruppe von Prof. Pfreundschuh nun zunutze gemacht und einen revolutionären Therapie-Ansatz entwickelt, das sogenannte „reverse Targeting“. „Reverse Targeting“ heißt dieser Ansatz, weil im Gegensatz zur Therapie mit Antikörpern, die einen immer wichtigeren Platz bei der Krebstherapie einnimmt, hier nicht der Antikörper zum Antigen auf einer Krebszelle geht und dort gebunden wird, sondern dass beim „reverse targeting“ das Antigen zum Antikörper, also dem Antigenrezeptor auf der Oberfläche der Lymphomzelle geht.

Wenn man an das Antigen ein Zellgift koppelt, wird dieses Zellgift mit dem Antigen nach der Bindung an den Antigenrezeptor auf der Oberfläche der Lymphomzelle in das Innere der Lymphomzelle transportiert und kann dort seine tödliche Wirkung entfalten. Da sehr viele Antigenrezeptoren auf der Oberfläche von Lymphomzellen vorhanden sind, sollte das „reverse targeting“ sehr effektiv sein, was nun im Reagenzglas und in Mäusen, denen ein menschliches Lymphom transplantiert worden war, bestätigt werden konnte.

Diese Forschungsergebnisse wurden jetzt im Juni erstmals auf dem Europäischen Hämatologie-Kongress vorgestellt und von den Teilnehmern als „sensationell“ oder gar „revolutionär“ bezeichnet. Mit den B-Zell-Rezeptor-Antigenen für das „reverse targeting“ (den sogenannten „BARs“) steht nun nicht nur ein völlig neuer Therapieansatz für Lymphome zur Verfügung; dieser Therapieansatz sollte auch besonders gut verträglich sein, denn „Reverse Targeting“ mit den Homburgern „BARs“ ist der erste Therapieansatz in der Geschichte der Krebstherapie, mit dem ausschließlich die bösartigen Lymphomzellen und nicht die anderen Zellen des Patienten angegriffen werden. „Reverse targeting“ ist also die am meisten personalisierte Therapie, die man sich vorstellen kann, oder anders ausgedrückt „precision medicine at the limits“.

Nachdem die Wirksamkeit der „BARs“ im Reagenzglas und im Mausmodell bewiesen ist, geht es jetzt darum, dieses Verfahren möglichst umgehend in die Klinik zu bringen. Dafür sucht die Universität des Saarlandes als Inhaber des Patents für das „reverse targeting“ nun einen kompetenten industriellen Partner.

Foto: Professor Dr. Michael Pfreundschuh

Kontakt für Journalisten:

Prof. Dr. Michael Pfreundschuh

Klinik für Innere Medizin I - Onkologie, Hämatologie,
Klinische Immunologie und Rheumatologie

Universitätsklinikum des Saarlandes und
Medizinische Fakultät der Universität des Saarlandes

Tel.: 0 68 41 / 16 - 2 30 02

http://www.uks.eu/onkologie

Roger Motsch | Universität des Saarlandes

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Warum der Brennstoffzelle die Luft wegbleibt
28.03.2017 | Technische Universität Wien

nachricht Chlamydien: Wie Bakterien das Ruder übernehmen
28.03.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Warum der Brennstoffzelle die Luft wegbleibt

28.03.2017 | Biowissenschaften Chemie

Chlamydien: Wie Bakterien das Ruder übernehmen

28.03.2017 | Biowissenschaften Chemie

Sterngeburt in den Winden supermassereicher Schwarzer Löcher

28.03.2017 | Physik Astronomie