Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Untersuchung einfacher Modellzellen klärt Mechanismen der Verformung: Die Mechanik der Zelle

18.04.2016

Lebende Zellen müssen sich aktiv verformen können, sonst könnten sie sich beispielsweise nicht teilen. An der Technischen Universität München (TUM) haben der Biophysiker Professor Andreas Bausch und sein Team ein synthetisches Zellmodell entwickelt, um grundlegende Gesetzmäßigkeiten dieser Zellmechanik zu erforschen.

Eine lebende Zelle hat kein entspanntes Dasein: Ständig muss sie ihre Gestalt anpassen. Wenn sie sich teilt, muss sie ihre gesamte Form massiv umbauen. Wenn sie Stoffe aufnimmt, muss sie ihre äußere Membranhülle stark verformen. Und wenn sie auf Wanderschaft geht, muss sie zunächst einmal entscheiden, wo vorne und wo hinten ist, dann ihre eingebauten molekularen Motoren anwerfen und so die Fortbewegung in Gang setzen.


Modell eines zellulären Vesikels mit aktivem Zytoskelett (grün), das Kräfte auf die umgebende Zellmembran ausübt.

Bild: Etienne Loiseau / TUM

Zellen sind lebende Gebilde mit vielen dynamischen Funktionen. Die Fähigkeit einer Zelle, ihre Form zu ändern, ist dabei entscheidend. Bei der Zellteilung spielen diese Prozesse eine wichtige Rolle, bei Wundheilung oder Embryonalentwicklung, aber auch, wenn Krebszellen sich im Körper ausbreiten.

Wie sich eine Zelle spontan mit Hilfe einiger weniger Komponenten verformt, untersuchten Forscher um den Biophysiker Andreas Bausch, Inhaber des Lehrstuhls für Zellbiophysik an der TU München und Mitglied des Exzellenzclusters Nanosystems Initiative Munich, nun mit einem einfachen Zellmodell genauer. Der Nachbau soll helfen, die Funktionen des komplexen Zellsystems besser zu verstehen.

Modellzelle zur Untersuchung der Zellmechanik

Die Hülle der Modellzelle besteht aus einer zweischichtigen Lipidmembran, ganz analog zu natürlichen Zellmembranen. In dieses Vesikel füllten die Forscher gezielt Biomoleküle, die in Körperzellen wichtige Funktionen haben. Bei ihren Versuchen zur Verformung der Zellen verwendeten sie zum einen längliche Aktin-Filamente, die in Zellen in der Regel Bestandteil des Zellskeletts sind.

Dazu gaben sie das Eiweiß Anilin, das in der Lage ist, die Aktin-Filamente miteinander zu verbinden und für Zellstabilität sorgt, und schließlich noch Myosin als molekularen Motor – denn um ihre Form verändern zu können, müssen die Zellen mit Hilfe solcher Motoren aktiv Kraft zu erzeugen.

Im Versuch beobachteten die Forscher, unter welchen Bedingungen sich die Modellzellen spontan verformen, die Zellskelett-Membran sich also entweder nach innen stülpt oder aber in bestimmten Bereichen eine Art Blase bildet, das so genannte Blebbing. Die Kräfte, die die äußere Form der Zelle verändern, wirken jeweils gegen die Lipidmembran.

„Das Zusammenspiel von Zellskelett und Membran ist der Schlüssel für alle Formveränderungen“, sagt Etienne Loiseau aus der Arbeitsgruppe Bausch und Erstautor der aktuellen Studie. „Bisher wurden Zytoskelett und Vesikel meist getrennt beobachtet, die Interaktionen dieser beiden essentiellen Komponenten konnte kaum untersucht werden.“

Konzentration auf das Wesentliche

Die in dem vom Exzellenzcluster Nanosystems Initiative Munich (NIM) geförderten Projekt aufgebaute Modellzelle kommt mit einer kleinen Anzahl von Komponenten aus. Auch die jeweiligen Konzentrationen der beteiligten Proteine lassen sich gezielt verändern und exakt kontrollieren.

Bausch und seine Kollegen zeigten, dass es auf die Wechselwirkung der Proteine in der Anwesenheit aller anderen Komponenten ankommt. Erst durch das Zusammenspiel der verschiedenen Komponenten entstehen biologische Funktionen. Offenbar ist auch die Konzentration der Komponenten entscheidend dafür, wie genau sich eine Zelle verformt.

„Erstaunlicherweise lässt sich mit denselben Proteinen einerseits eine Ausstülpung der Membran (blebbing) erreichen, während genau dasselbe System von Proteinen und Membran bei einer leicht anderen Konzentration einfach nur zu einer krassen Deformation führt“, sagt Bausch. „Es ist unerlässlich, die Interaktion der Proteine im Kontext zu verstehen – es sind die Wechselwirkungen der Proteine, die die Funktion ausmachen.“

Wirkmechanismen verstehen

Zwar gelingt es Biologen in aufwändigen zellbiologischen und biochemischen Experimenten die beteiligten Proteine oder Gene zu identifizieren, aufgrund der Komplexität der Zellen ist es aber meist nicht möglich, dabei auch die zugrundeliegenden Wirkmechanismen zu verstehen. „Unser „Bottom-up“-Ansatz auf Basis der synthetischen Zellmodelle hilft, wichtige Funktionsbeziehungen zu erkennen und zu erklären“, sagt Professor Bausch.

Noch funktionieren die Versuche zur Verformung von Zellen nur in statischen Systemen. Im nächsten Schritt wollen die Wissenschaftler versuchen, auch die dynamischen Prozesse nachzubauen, Bläschen im Zellmembran-Skelett also wie in der Natur entstehen und wieder verschwinden lassen und somit eine künstliche Modellzelle schaffen, die autonom existieren und sich auch fortbewegen kann.

Finanziell unterstützt wurden die Forschungsarbeiten mit Mitteln des European Research Council (ERC), der Deutschen Forschungsgemeinschaft (SFB 863 und Exzellenzcluster Nanosystems Initiative Munich). Proteininteraktionen wie diese stehen auch im Zentrum des Forschungsneubaus TUM Center for Protein Assemblies (CPA) der, aufgrund seiner überregionalen Bedeutung je zur Hälfte von Bund und Land gefördert, in den nächsten zwei Jahren auf dem Campus Garching entstehen soll.

Publikation:

Shape remodeling and blebbing of active cytoskeletal vesicles
Etienne Loiseau, Jochen A. M. Schneider, Felix C. Keber, Carina Pelzl, Gladys Massiera, Guillaume Salbreux and Andreas R. Bausch
Science Advances, Vol. 2, no. 4, e1500465, Apr. 15, 2016 – DOI: 10.1126/sciadv.1500465

Kontakt:

Prof. Dr. Andreas Bausch
Technische Universität München
Lehrstuhl für Zellbiophysik (E27)
James-Franck-Str. 1, 85747 Garching, Germany
Tel.: +49 89 289 12480 – E-Mail: andreas.bausch@ph.tum.de

Weitere Informationen:

http://advances.sciencemag.org/content/2/4/e1500465
http://bio.ph.tum.de/home/e27-prof-dr-bausch/bausch-home.html

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Erster Atemzug prägt Immunsystem nachhaltig
22.02.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Wie Proteine zueinander finden
21.02.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

6. Internationale Fachkonferenz „InnoTesting“ am 23. und 24. Februar 2017 in Wildau

22.02.2017 | Veranstaltungen

Wunderwelt der Mikroben

22.02.2017 | Veranstaltungen

Der Lkw der Zukunft kommt ohne Fahrer aus

21.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

6. Internationale Fachkonferenz „InnoTesting“ am 23. und 24. Februar 2017 in Wildau

22.02.2017 | Veranstaltungsnachrichten

Neue Prozesstechnik für effizientes Bohren und Schneiden auf der LASER CHINA

22.02.2017 | Messenachrichten

IHP-Forschungsteam verbessert Zuverlässigkeit beim automatisierten Fahren

22.02.2017 | Automotive