Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Untersuchung einfacher Modellzellen klärt Mechanismen der Verformung: Die Mechanik der Zelle

18.04.2016

Lebende Zellen müssen sich aktiv verformen können, sonst könnten sie sich beispielsweise nicht teilen. An der Technischen Universität München (TUM) haben der Biophysiker Professor Andreas Bausch und sein Team ein synthetisches Zellmodell entwickelt, um grundlegende Gesetzmäßigkeiten dieser Zellmechanik zu erforschen.

Eine lebende Zelle hat kein entspanntes Dasein: Ständig muss sie ihre Gestalt anpassen. Wenn sie sich teilt, muss sie ihre gesamte Form massiv umbauen. Wenn sie Stoffe aufnimmt, muss sie ihre äußere Membranhülle stark verformen. Und wenn sie auf Wanderschaft geht, muss sie zunächst einmal entscheiden, wo vorne und wo hinten ist, dann ihre eingebauten molekularen Motoren anwerfen und so die Fortbewegung in Gang setzen.


Modell eines zellulären Vesikels mit aktivem Zytoskelett (grün), das Kräfte auf die umgebende Zellmembran ausübt.

Bild: Etienne Loiseau / TUM

Zellen sind lebende Gebilde mit vielen dynamischen Funktionen. Die Fähigkeit einer Zelle, ihre Form zu ändern, ist dabei entscheidend. Bei der Zellteilung spielen diese Prozesse eine wichtige Rolle, bei Wundheilung oder Embryonalentwicklung, aber auch, wenn Krebszellen sich im Körper ausbreiten.

Wie sich eine Zelle spontan mit Hilfe einiger weniger Komponenten verformt, untersuchten Forscher um den Biophysiker Andreas Bausch, Inhaber des Lehrstuhls für Zellbiophysik an der TU München und Mitglied des Exzellenzclusters Nanosystems Initiative Munich, nun mit einem einfachen Zellmodell genauer. Der Nachbau soll helfen, die Funktionen des komplexen Zellsystems besser zu verstehen.

Modellzelle zur Untersuchung der Zellmechanik

Die Hülle der Modellzelle besteht aus einer zweischichtigen Lipidmembran, ganz analog zu natürlichen Zellmembranen. In dieses Vesikel füllten die Forscher gezielt Biomoleküle, die in Körperzellen wichtige Funktionen haben. Bei ihren Versuchen zur Verformung der Zellen verwendeten sie zum einen längliche Aktin-Filamente, die in Zellen in der Regel Bestandteil des Zellskeletts sind.

Dazu gaben sie das Eiweiß Anilin, das in der Lage ist, die Aktin-Filamente miteinander zu verbinden und für Zellstabilität sorgt, und schließlich noch Myosin als molekularen Motor – denn um ihre Form verändern zu können, müssen die Zellen mit Hilfe solcher Motoren aktiv Kraft zu erzeugen.

Im Versuch beobachteten die Forscher, unter welchen Bedingungen sich die Modellzellen spontan verformen, die Zellskelett-Membran sich also entweder nach innen stülpt oder aber in bestimmten Bereichen eine Art Blase bildet, das so genannte Blebbing. Die Kräfte, die die äußere Form der Zelle verändern, wirken jeweils gegen die Lipidmembran.

„Das Zusammenspiel von Zellskelett und Membran ist der Schlüssel für alle Formveränderungen“, sagt Etienne Loiseau aus der Arbeitsgruppe Bausch und Erstautor der aktuellen Studie. „Bisher wurden Zytoskelett und Vesikel meist getrennt beobachtet, die Interaktionen dieser beiden essentiellen Komponenten konnte kaum untersucht werden.“

Konzentration auf das Wesentliche

Die in dem vom Exzellenzcluster Nanosystems Initiative Munich (NIM) geförderten Projekt aufgebaute Modellzelle kommt mit einer kleinen Anzahl von Komponenten aus. Auch die jeweiligen Konzentrationen der beteiligten Proteine lassen sich gezielt verändern und exakt kontrollieren.

Bausch und seine Kollegen zeigten, dass es auf die Wechselwirkung der Proteine in der Anwesenheit aller anderen Komponenten ankommt. Erst durch das Zusammenspiel der verschiedenen Komponenten entstehen biologische Funktionen. Offenbar ist auch die Konzentration der Komponenten entscheidend dafür, wie genau sich eine Zelle verformt.

„Erstaunlicherweise lässt sich mit denselben Proteinen einerseits eine Ausstülpung der Membran (blebbing) erreichen, während genau dasselbe System von Proteinen und Membran bei einer leicht anderen Konzentration einfach nur zu einer krassen Deformation führt“, sagt Bausch. „Es ist unerlässlich, die Interaktion der Proteine im Kontext zu verstehen – es sind die Wechselwirkungen der Proteine, die die Funktion ausmachen.“

Wirkmechanismen verstehen

Zwar gelingt es Biologen in aufwändigen zellbiologischen und biochemischen Experimenten die beteiligten Proteine oder Gene zu identifizieren, aufgrund der Komplexität der Zellen ist es aber meist nicht möglich, dabei auch die zugrundeliegenden Wirkmechanismen zu verstehen. „Unser „Bottom-up“-Ansatz auf Basis der synthetischen Zellmodelle hilft, wichtige Funktionsbeziehungen zu erkennen und zu erklären“, sagt Professor Bausch.

Noch funktionieren die Versuche zur Verformung von Zellen nur in statischen Systemen. Im nächsten Schritt wollen die Wissenschaftler versuchen, auch die dynamischen Prozesse nachzubauen, Bläschen im Zellmembran-Skelett also wie in der Natur entstehen und wieder verschwinden lassen und somit eine künstliche Modellzelle schaffen, die autonom existieren und sich auch fortbewegen kann.

Finanziell unterstützt wurden die Forschungsarbeiten mit Mitteln des European Research Council (ERC), der Deutschen Forschungsgemeinschaft (SFB 863 und Exzellenzcluster Nanosystems Initiative Munich). Proteininteraktionen wie diese stehen auch im Zentrum des Forschungsneubaus TUM Center for Protein Assemblies (CPA) der, aufgrund seiner überregionalen Bedeutung je zur Hälfte von Bund und Land gefördert, in den nächsten zwei Jahren auf dem Campus Garching entstehen soll.

Publikation:

Shape remodeling and blebbing of active cytoskeletal vesicles
Etienne Loiseau, Jochen A. M. Schneider, Felix C. Keber, Carina Pelzl, Gladys Massiera, Guillaume Salbreux and Andreas R. Bausch
Science Advances, Vol. 2, no. 4, e1500465, Apr. 15, 2016 – DOI: 10.1126/sciadv.1500465

Kontakt:

Prof. Dr. Andreas Bausch
Technische Universität München
Lehrstuhl für Zellbiophysik (E27)
James-Franck-Str. 1, 85747 Garching, Germany
Tel.: +49 89 289 12480 – E-Mail: andreas.bausch@ph.tum.de

Weitere Informationen:

http://advances.sciencemag.org/content/2/4/e1500465
http://bio.ph.tum.de/home/e27-prof-dr-bausch/bausch-home.html

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics