Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Untersuchung einfacher Modellzellen klärt Mechanismen der Verformung: Die Mechanik der Zelle

18.04.2016

Lebende Zellen müssen sich aktiv verformen können, sonst könnten sie sich beispielsweise nicht teilen. An der Technischen Universität München (TUM) haben der Biophysiker Professor Andreas Bausch und sein Team ein synthetisches Zellmodell entwickelt, um grundlegende Gesetzmäßigkeiten dieser Zellmechanik zu erforschen.

Eine lebende Zelle hat kein entspanntes Dasein: Ständig muss sie ihre Gestalt anpassen. Wenn sie sich teilt, muss sie ihre gesamte Form massiv umbauen. Wenn sie Stoffe aufnimmt, muss sie ihre äußere Membranhülle stark verformen. Und wenn sie auf Wanderschaft geht, muss sie zunächst einmal entscheiden, wo vorne und wo hinten ist, dann ihre eingebauten molekularen Motoren anwerfen und so die Fortbewegung in Gang setzen.


Modell eines zellulären Vesikels mit aktivem Zytoskelett (grün), das Kräfte auf die umgebende Zellmembran ausübt.

Bild: Etienne Loiseau / TUM

Zellen sind lebende Gebilde mit vielen dynamischen Funktionen. Die Fähigkeit einer Zelle, ihre Form zu ändern, ist dabei entscheidend. Bei der Zellteilung spielen diese Prozesse eine wichtige Rolle, bei Wundheilung oder Embryonalentwicklung, aber auch, wenn Krebszellen sich im Körper ausbreiten.

Wie sich eine Zelle spontan mit Hilfe einiger weniger Komponenten verformt, untersuchten Forscher um den Biophysiker Andreas Bausch, Inhaber des Lehrstuhls für Zellbiophysik an der TU München und Mitglied des Exzellenzclusters Nanosystems Initiative Munich, nun mit einem einfachen Zellmodell genauer. Der Nachbau soll helfen, die Funktionen des komplexen Zellsystems besser zu verstehen.

Modellzelle zur Untersuchung der Zellmechanik

Die Hülle der Modellzelle besteht aus einer zweischichtigen Lipidmembran, ganz analog zu natürlichen Zellmembranen. In dieses Vesikel füllten die Forscher gezielt Biomoleküle, die in Körperzellen wichtige Funktionen haben. Bei ihren Versuchen zur Verformung der Zellen verwendeten sie zum einen längliche Aktin-Filamente, die in Zellen in der Regel Bestandteil des Zellskeletts sind.

Dazu gaben sie das Eiweiß Anilin, das in der Lage ist, die Aktin-Filamente miteinander zu verbinden und für Zellstabilität sorgt, und schließlich noch Myosin als molekularen Motor – denn um ihre Form verändern zu können, müssen die Zellen mit Hilfe solcher Motoren aktiv Kraft zu erzeugen.

Im Versuch beobachteten die Forscher, unter welchen Bedingungen sich die Modellzellen spontan verformen, die Zellskelett-Membran sich also entweder nach innen stülpt oder aber in bestimmten Bereichen eine Art Blase bildet, das so genannte Blebbing. Die Kräfte, die die äußere Form der Zelle verändern, wirken jeweils gegen die Lipidmembran.

„Das Zusammenspiel von Zellskelett und Membran ist der Schlüssel für alle Formveränderungen“, sagt Etienne Loiseau aus der Arbeitsgruppe Bausch und Erstautor der aktuellen Studie. „Bisher wurden Zytoskelett und Vesikel meist getrennt beobachtet, die Interaktionen dieser beiden essentiellen Komponenten konnte kaum untersucht werden.“

Konzentration auf das Wesentliche

Die in dem vom Exzellenzcluster Nanosystems Initiative Munich (NIM) geförderten Projekt aufgebaute Modellzelle kommt mit einer kleinen Anzahl von Komponenten aus. Auch die jeweiligen Konzentrationen der beteiligten Proteine lassen sich gezielt verändern und exakt kontrollieren.

Bausch und seine Kollegen zeigten, dass es auf die Wechselwirkung der Proteine in der Anwesenheit aller anderen Komponenten ankommt. Erst durch das Zusammenspiel der verschiedenen Komponenten entstehen biologische Funktionen. Offenbar ist auch die Konzentration der Komponenten entscheidend dafür, wie genau sich eine Zelle verformt.

„Erstaunlicherweise lässt sich mit denselben Proteinen einerseits eine Ausstülpung der Membran (blebbing) erreichen, während genau dasselbe System von Proteinen und Membran bei einer leicht anderen Konzentration einfach nur zu einer krassen Deformation führt“, sagt Bausch. „Es ist unerlässlich, die Interaktion der Proteine im Kontext zu verstehen – es sind die Wechselwirkungen der Proteine, die die Funktion ausmachen.“

Wirkmechanismen verstehen

Zwar gelingt es Biologen in aufwändigen zellbiologischen und biochemischen Experimenten die beteiligten Proteine oder Gene zu identifizieren, aufgrund der Komplexität der Zellen ist es aber meist nicht möglich, dabei auch die zugrundeliegenden Wirkmechanismen zu verstehen. „Unser „Bottom-up“-Ansatz auf Basis der synthetischen Zellmodelle hilft, wichtige Funktionsbeziehungen zu erkennen und zu erklären“, sagt Professor Bausch.

Noch funktionieren die Versuche zur Verformung von Zellen nur in statischen Systemen. Im nächsten Schritt wollen die Wissenschaftler versuchen, auch die dynamischen Prozesse nachzubauen, Bläschen im Zellmembran-Skelett also wie in der Natur entstehen und wieder verschwinden lassen und somit eine künstliche Modellzelle schaffen, die autonom existieren und sich auch fortbewegen kann.

Finanziell unterstützt wurden die Forschungsarbeiten mit Mitteln des European Research Council (ERC), der Deutschen Forschungsgemeinschaft (SFB 863 und Exzellenzcluster Nanosystems Initiative Munich). Proteininteraktionen wie diese stehen auch im Zentrum des Forschungsneubaus TUM Center for Protein Assemblies (CPA) der, aufgrund seiner überregionalen Bedeutung je zur Hälfte von Bund und Land gefördert, in den nächsten zwei Jahren auf dem Campus Garching entstehen soll.

Publikation:

Shape remodeling and blebbing of active cytoskeletal vesicles
Etienne Loiseau, Jochen A. M. Schneider, Felix C. Keber, Carina Pelzl, Gladys Massiera, Guillaume Salbreux and Andreas R. Bausch
Science Advances, Vol. 2, no. 4, e1500465, Apr. 15, 2016 – DOI: 10.1126/sciadv.1500465

Kontakt:

Prof. Dr. Andreas Bausch
Technische Universität München
Lehrstuhl für Zellbiophysik (E27)
James-Franck-Str. 1, 85747 Garching, Germany
Tel.: +49 89 289 12480 – E-Mail: andreas.bausch@ph.tum.de

Weitere Informationen:

http://advances.sciencemag.org/content/2/4/e1500465
http://bio.ph.tum.de/home/e27-prof-dr-bausch/bausch-home.html

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten