Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unterschiedliche Reichweite von Signalmolekülen verursacht Wachstumsstörungen

05.03.2009
Wissenschaftler beschreiben molekulare Abläufe beim Längenwachstum der Finger

Als Brachydaktylie bezeichnen Mediziner eine Gruppe von seltenen, genetisch bedingten Erkrankungen, bei denen einer oder mehrere Finger verkürzt sind (Griech. brachys = kurz, dactylos = Finger).

Seit langem bekannt ist die Brachydaktylie A1, bei der die mittleren Fingerglieder betroffen sind. Wissenschaftler der Universitäten Hong Kong und Shanghai konnten jetzt gemeinsam mit Kollegen des Max-Planck-Instituts für molekulare Genetik und der Charité - Universitätsmedizin Berlin zeigen, dass die Verkürzung der Finger nicht durch eine Wachstumsstörung einzelner Knochen hervorgerufen wird.

Vielmehr fehlt dem Organismus bei dieser Erkrankung die Fähigkeit, Zellen aus dem umliegenden Gewebe in den wachsenden Knorpel einzubauen und damit das Längenwachstum zu verstärken. Die vorab in der online-Version der Zeitschrift Nature veröffentlichte Studie klärt erstmalig den molekularen Mechanismus einer menschlichen Brachydaktylie auf und gibt neue Einblicke in die grundsätzlichen Abläufe beim Wachstum der Finger (Gao B, et al., Nature, doi:10.1038/nature07862, advance online publication March 1st, 2009).

Der menschliche Finger besteht aus drei einzelnen Gliedern. Während der Embryonalentwicklung werden zunächst knorpelige Anlagen für jeden Finger und die Mittelhand angelegt, die sich im weiteren Verlauf zu insgesamt vier einzelnen Knochen (Mittelhandknochen und Fingerknochen 1-3) entwickeln.

In der vorliegenden Studie untersuchten die beteiligten Wissenschaftler der Universitäten Hong-Kong und Shanghai, gemeinsam mit Kollegen des Max-Planck-Instituts für molekulare Genetik und der Charité - Universitätsmedizin Berlin eine bestimmte Form der erblich bedingten Kurzfingrigkeit (Brachydaktylie A1).

Bei dieser Erkrankung führen Mutationen im Indian Hedgehog (Ihh)-Gen bei den betroffenen Personen zu einer Verkürzung bzw. dem Fehlen der mittleren Fingerglieder. Brachydaktylie A1 ist die erste menschliche Erkrankung, für die bereits 1903 ein mendelscher autosomal-dominanter Erbgang nachgewiesen werden konnte. Für das Entstehen der Krankheit genügt es also, wenn das veränderte Ihh-Gen von nur einem Elternteil (Vater oder Mutter) weitergegeben wird.

"Finger entstehen, indem unspezifische embryonale Zellen (Mesenchymzellen), anfangen, sich zu Knorpelzellen zu differenzieren;" erläutert Stefan Mundlos, Leiter der Berliner Arbeitsgruppe, die an dem Projekt beteiligt war. "Dieser initiale Knorpel beginnt, sich zu ordnen und bildet aus Knorpel bestehende Vorläuferknochen, sogenannte Anlagen, die anschließend zu echten Knochen umgebaut werden."

Hauptverantwortlich für die Differenzierung der Knorpelzellen ist das Indian Hedgehog-Protein (Ihh). Im gesunden Organismus wird es von bestimmten Knorpelzellen gebildet und diffundiert in das umliegende Gewebe, wo es mit zwei weiteren Molekülen, dem Rezeptor PTCH1 und seinem Gegenspieler HIP1 interagiert. HIP1, das sogenannte Hedgehog-Interacting Protein ist dabei für die Festlegung des Aktionsradius des Ihh verantwortlich. Es wird am äußeren Rand der entstehenden Knorpelanlage gebildet, wodurch die Wirkung des Ihh auf einen bestimmten Bereich begrenzt bleibt.

An der Spitze des wachsenden Fingers im Bereich des künftigen zweiten und dritten Fingergliedes ist die Abgrenzung durch HIP1 jedoch unterbrochen, so dass die Ihh-Moleküle bis in das undifferenzierte Embryonalgewebe (Mesenchym) diffundieren können. Dort bewirken sie die Aufnahme von Mesenchymzellen in den wachsenden Knochen und verstärken dadurch das Längenwachstum des Fingers.

Die Forscher fanden heraus, dass Ihh bei Patienten mit Brachydaktylie A1 so verändert ist, dass es nicht mehr so gut an seinen Rezeptor und an HIP1 binden kann. Dadurch können die Ihh-Moleküle weiter in das umgebende Gewebe diffundieren, als es normalerweise der Fall ist. Im Bereich des ersten Fingergliedes gelangt Ihh auf diese Weise in die sogenannte Interzone zwischen den künftigen Fingergliedern 1 und 2/3. Dort verstärkt es die Bildung des Parathyroid-hormone-related-Peptide (PTHrP), das in Folge über einen negativen Rückkopplungsmechanismus die Bildung von Ihh insbesondere im vorderen Fingerglied 2/3 unterdrückt. Hier kann entsprechend nicht mehr genügend Ihh in das undifferenzierte Gewebe an der Spitze des wachsenden Fingers gelangen und die Aufnahme zusätzlichen Materials bricht zusammen.

Die vorgelegte Studie klärt erstmalig den molekularen Mechanismus einer menschlichen Brachydaktylie auf. Weiterhin stellen die Wissenschaftler einen neuen, bislang unbekannten Mechanismus zum Wachstum der Finger vor. Bisher gingen Forscher davon aus, dass die Entstehung von Knorpelzellen vor allem durch Signale "von außen", beispielsweise aus der Haut oder dem umgebenden undifferenzierten Embryonalgewebe gesteuert wird. Die jetzt publizierte Arbeit zeigt jedoch, dass das vom Knorpel selbst produzierte Ihh essentiell für das Längenwachstum des Fingers ist.

Originalveröffentlichung:
Gao, B., Hu, J., Stricker, S., Cheung, M., Ma, G., Fong Law, K., Witte, F., Briscoe, J., Mundlos, S., He, L., Cheah K.S.E., Chan, D. (2009). A mutation in Ihh that causes digit abnormalities alters its signaling capacity and range. Nature, doi: 10.1038/nature07862, advance online publication March 1st, 2009
Kontakt (Pressestelle):
Dr. Patricia Marquardt
Max-Planck-Institut für molekulare Genetik
Ihnestr. 63-73
14195 Berlin
Tel.: +49 30 8413-1716
Fax: +49 30 8413-1671
Email : patricia.marquardt@molgen.mpg.de

Dr. Patricia Marquardt | idw
Weitere Informationen:
http://www.molgen.mpg.de/research/mundlos/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Im Mikrokosmos wird es bunt: 124 Farben dank RGB-Technologie
22.06.2017 | Max-Planck-Institut für Biochemie

nachricht CO2-neutraler Wasserstoff aus Biomasse
22.06.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie

Innovative High Power LED Light Engine für den UV Bereich

22.06.2017 | Physik Astronomie

Wie Menschen Schäden an Gebäuden wahrnehmen

22.06.2017 | Architektur Bauwesen