Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unterschiedliche Gewebe einfach ausdrucken

01.10.2013
Was sich wie Zukunftsmusik anhört, wird bereits seit einigen Jahren erforscht: Gewebe und Organe einfach auszudrucken.

Jetzt haben Wissenschaftler die Technologie weiter verfeinert und sind in der Lage unterschiedliche Gewebe zu produzieren.


Labor statt Büro: Forscher drucken mit Hilfe von Tintenstrahldruckern Zellsuspensionen auf rosa schimmernde Hydrogel-Pads, die das Austrocknen verhindern. © Fraunhofer IGB

Die jüngsten Skandale haben das Problem noch verschlimmert: Laut der Deutschen Stiftung für Organtransplantation (DSO) ging die Zahl der Organspender im ersten Halbjahr 2013 um über 18 Prozent im Vergleich zum Vorjahreszeitraum zurück. Gleichzeitig darf man davon ausgehen, dass die Nachfrage in den nächsten Jahren kontinuierlich steigt:

Denn wir werden immer älter und die Transplantationsmedizin macht immer mehr Fortschritte. Indem man Zellen, Gewebe oder Organe ersetzt, können schon heute viele schwerwiegende Krankheiten geheilt werden. Politik, Industrie und Forschung arbeiten deshalb schon seit geraumer Zeit intensiv daran, Methoden und Verfahren zu verbessern, mit deren Hilfe sich Gewebe künstlich herstellen lassen. So soll die Versorgungslücke geschlossen werden.

Biotinte aus lebenden Zellen

Dabei könnte eine Technologie eine entscheidende Rolle übernehmen, die wir alle aus dem Büro kennen und die meisten von uns zunächst wohl nicht mit der Produktion künstlicher Organe in Verbindung bringen: der Tintenstrahldruck. Wissenschaftlern des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB aus Stuttgart ist es gelungen, für diese Drucktechnik geeignete Biotinten zu entwickeln. Die durchsichtigen Flüssigkeiten bestehen aus tierischem Material und lebenden Zellen. Die Basis bildet eine Substanz, die aus natürlichen Geweben gewonnen wird: Gelatine. Sie ist ein Abbauprodukt der Kollagene, die den Hauptbestandteil der Matrix natürlicher Gewebe bilden. Um die Biomoleküle fit für den Druck zu machen, haben die Forscher deren Gelierverhalten chemisch angepasst. Während des Drucks bleiben die Biotinten flüssig und somit druckbar. Werden sie danach mit UV-Licht bestrahlt, vernetzen sie zu Hydrogelen. Das sind Polymere, die Wasser enthalten, sich aber weder unter Wärmeeinfluss noch in Wasser auflösen. Die chemische Modifizierung der Biomoleküle können die Forscher so steuern, dass die resultierenden Gele unterschiedliche Festigkeiten und Quellbarkeiten besitzen. Damit lassen sich die Eigenschaften von natürlichen Geweben nachbilden – von festem Knorpel- bis hin zu weichem Fettgewebe.

Auch aus künstlichen Ausgangsmaterialien lassen sich mit den Druckern der Stuttgarter Forscher Gele produzieren, die als Ersatz für die extrazelluläre Matrix dienen können. Zum Beispiel haben sie ein System entwickelt, das ohne die Ausbildung von Nebenprodukten zu einem Hydrogel vernetzt und direkt mit echten Zellen besiedelt werden kann. »Aktuell konzentrieren wir uns aber auf die ›natürliche‹ Variante. Wir bleiben damit sehr nah am Original. Auch wenn das Potenzial von künstlich hergestellten Biotinten groß ist, müssen wir erst noch einiges über die Wechselwirkungen zwischen den Kunststoffen und dem natürlichen Gewebematerial lernen. Unsere Variante dagegen gibt den Zellen ihre natürliche Umgebung und kann so direkt die Selbstorganisation der gedruckten Zellen zu einem funktionalen Gewebemodell fördern«, schildert Dr. Kirsten Borchers den Ansatz am IGB.

Die Drucker in den Stuttgarter Laboren haben viel gemeinsam mit herkömmlichen Bürodruckern: Tintenreservoir, Düsen – alles wie gehabt. Erst beim genaueren Hinsehen entdeckt man die Unterschiede. Zum Beispiel die kleine Heizung am Tintenbehälter, mit der die passende Temperatur der Biotinte eingestellt wird. Auch die Anzahl der Düsen und der Tanks ist noch geringer als beim Büro-Pendant. »Zusammen mit anderen Fraunhofer-Instituten und der Industrie wollen wir deren Zahl erhöhen, um gleichzeitig verschiedene Tinten mit unterschiedlichen Zellen und Matrices auszudrucken. So nähern wir uns der Herstellung komplexerer Strukturen und unterschiedlicher Gewebe«, erklärt Borchers.

Die größte Herausforderung ist es derzeit, vaskularisiertes Gewebe zu produzieren. Dabei handelt es sich um Gewebe, das über ein eigenes Blutgefäßsystem verfügt und darüber mit Nährstoffen versorgt werden kann. Daran arbeitet das IGB zusammen mit anderen Partnern in dem von der Europäischen Union geförderten Projekt »ArtiVasc 3D«. Im Mittelpunkt steht hier eine Technologie, mit der es möglich ist, feine Blutgefäßmodelle aus synthetischen Materialien zu produzieren und damit erstmals künstliche Haut mit dem darunterliegenden Fettgewebe zu erzeugen. »Um zukünftig ganze Organe drucken zu können, ist dieser Schritt sehr wichtig. Erst wenn es uns gelingt, Gewebe zu produzieren, die durch ein Blutgefäßsystem versorgt werden können, ist der Druck von größeren Gewebestrukturen möglich«, schließt Borchers. Sie zeigt die IGB-Technologie auf der »Biotechnica« von 8. bis 10. Oktober 2013 in Hannover (Halle 9, Stand E09).

Dr. rer. nat. Kirsten Borchers | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2013/Oktober/unterschiedliche-gewebe-einfach-ausdrucken-2.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie