Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unterschiedliche Gewebe einfach ausdrucken

01.10.2013
Was sich wie Zukunftsmusik anhört, wird bereits seit einigen Jahren erforscht: Gewebe und Organe einfach auszudrucken.

Jetzt haben Wissenschaftler die Technologie weiter verfeinert und sind in der Lage unterschiedliche Gewebe zu produzieren.


Labor statt Büro: Forscher drucken mit Hilfe von Tintenstrahldruckern Zellsuspensionen auf rosa schimmernde Hydrogel-Pads, die das Austrocknen verhindern. © Fraunhofer IGB

Die jüngsten Skandale haben das Problem noch verschlimmert: Laut der Deutschen Stiftung für Organtransplantation (DSO) ging die Zahl der Organspender im ersten Halbjahr 2013 um über 18 Prozent im Vergleich zum Vorjahreszeitraum zurück. Gleichzeitig darf man davon ausgehen, dass die Nachfrage in den nächsten Jahren kontinuierlich steigt:

Denn wir werden immer älter und die Transplantationsmedizin macht immer mehr Fortschritte. Indem man Zellen, Gewebe oder Organe ersetzt, können schon heute viele schwerwiegende Krankheiten geheilt werden. Politik, Industrie und Forschung arbeiten deshalb schon seit geraumer Zeit intensiv daran, Methoden und Verfahren zu verbessern, mit deren Hilfe sich Gewebe künstlich herstellen lassen. So soll die Versorgungslücke geschlossen werden.

Biotinte aus lebenden Zellen

Dabei könnte eine Technologie eine entscheidende Rolle übernehmen, die wir alle aus dem Büro kennen und die meisten von uns zunächst wohl nicht mit der Produktion künstlicher Organe in Verbindung bringen: der Tintenstrahldruck. Wissenschaftlern des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB aus Stuttgart ist es gelungen, für diese Drucktechnik geeignete Biotinten zu entwickeln. Die durchsichtigen Flüssigkeiten bestehen aus tierischem Material und lebenden Zellen. Die Basis bildet eine Substanz, die aus natürlichen Geweben gewonnen wird: Gelatine. Sie ist ein Abbauprodukt der Kollagene, die den Hauptbestandteil der Matrix natürlicher Gewebe bilden. Um die Biomoleküle fit für den Druck zu machen, haben die Forscher deren Gelierverhalten chemisch angepasst. Während des Drucks bleiben die Biotinten flüssig und somit druckbar. Werden sie danach mit UV-Licht bestrahlt, vernetzen sie zu Hydrogelen. Das sind Polymere, die Wasser enthalten, sich aber weder unter Wärmeeinfluss noch in Wasser auflösen. Die chemische Modifizierung der Biomoleküle können die Forscher so steuern, dass die resultierenden Gele unterschiedliche Festigkeiten und Quellbarkeiten besitzen. Damit lassen sich die Eigenschaften von natürlichen Geweben nachbilden – von festem Knorpel- bis hin zu weichem Fettgewebe.

Auch aus künstlichen Ausgangsmaterialien lassen sich mit den Druckern der Stuttgarter Forscher Gele produzieren, die als Ersatz für die extrazelluläre Matrix dienen können. Zum Beispiel haben sie ein System entwickelt, das ohne die Ausbildung von Nebenprodukten zu einem Hydrogel vernetzt und direkt mit echten Zellen besiedelt werden kann. »Aktuell konzentrieren wir uns aber auf die ›natürliche‹ Variante. Wir bleiben damit sehr nah am Original. Auch wenn das Potenzial von künstlich hergestellten Biotinten groß ist, müssen wir erst noch einiges über die Wechselwirkungen zwischen den Kunststoffen und dem natürlichen Gewebematerial lernen. Unsere Variante dagegen gibt den Zellen ihre natürliche Umgebung und kann so direkt die Selbstorganisation der gedruckten Zellen zu einem funktionalen Gewebemodell fördern«, schildert Dr. Kirsten Borchers den Ansatz am IGB.

Die Drucker in den Stuttgarter Laboren haben viel gemeinsam mit herkömmlichen Bürodruckern: Tintenreservoir, Düsen – alles wie gehabt. Erst beim genaueren Hinsehen entdeckt man die Unterschiede. Zum Beispiel die kleine Heizung am Tintenbehälter, mit der die passende Temperatur der Biotinte eingestellt wird. Auch die Anzahl der Düsen und der Tanks ist noch geringer als beim Büro-Pendant. »Zusammen mit anderen Fraunhofer-Instituten und der Industrie wollen wir deren Zahl erhöhen, um gleichzeitig verschiedene Tinten mit unterschiedlichen Zellen und Matrices auszudrucken. So nähern wir uns der Herstellung komplexerer Strukturen und unterschiedlicher Gewebe«, erklärt Borchers.

Die größte Herausforderung ist es derzeit, vaskularisiertes Gewebe zu produzieren. Dabei handelt es sich um Gewebe, das über ein eigenes Blutgefäßsystem verfügt und darüber mit Nährstoffen versorgt werden kann. Daran arbeitet das IGB zusammen mit anderen Partnern in dem von der Europäischen Union geförderten Projekt »ArtiVasc 3D«. Im Mittelpunkt steht hier eine Technologie, mit der es möglich ist, feine Blutgefäßmodelle aus synthetischen Materialien zu produzieren und damit erstmals künstliche Haut mit dem darunterliegenden Fettgewebe zu erzeugen. »Um zukünftig ganze Organe drucken zu können, ist dieser Schritt sehr wichtig. Erst wenn es uns gelingt, Gewebe zu produzieren, die durch ein Blutgefäßsystem versorgt werden können, ist der Druck von größeren Gewebestrukturen möglich«, schließt Borchers. Sie zeigt die IGB-Technologie auf der »Biotechnica« von 8. bis 10. Oktober 2013 in Hannover (Halle 9, Stand E09).

Dr. rer. nat. Kirsten Borchers | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2013/Oktober/unterschiedliche-gewebe-einfach-ausdrucken-2.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Demographie beeinflusst Brutfürsorge bei Regenpfeifern
25.04.2018 | Max-Planck-Institut für Ornithologie

nachricht Von der Genexpression zur Mikrostruktur des Gehirns
24.04.2018 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Silizium als neues Speichermaterial für die Akkus der Zukunft

25.04.2018 | HANNOVER MESSE

IAB-Arbeitsmarktbarometer: Trotz Dämpfer auf gutem Niveau

25.04.2018 | Wirtschaft Finanzen

AWI-Forscher messen Rekordkonzentration von Mikroplastik im arktischen Meereis

25.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics