Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unsichtbare Signale lehren uns das Sehen

14.10.2010
Tübinger Wissenschaftler haben entdeckt, wie unsichtbare visuelle Informationen beitragen, die Welt in einem anderen Licht zu sehen

Wie lernen wir zu sehen, was wir sehen? Woher weiß unser Gehirn, wie es das Gesehene interpretieren muss? Diesen Fragen gingen Wissenschaftler des Max-Planck-Instituts für biologische Kybernetik auf den Grund. Sie beobachten einen Lernprozess, bei dem unsichtbare Signale das Sehverhalten erwachsener Probanden veränderten. (Current Biology, 8. Oktober 2010)


Ein Zylinder aufgebaut aus horizontalen Linien: Mit Hilfe einer speziellen Brille werden die blauen Linien nur vom rechten Auge gesehen, die roten nur vom Linken. Die vertikale Größe von dem roten und dem blauen Zylinder sind leicht unterschiedlich. Dr. Massimiliano Di Luca; Max-Planck-Institut für biologische Kybernetik Tübingen

Wahrnehmungsanpassungen geschehen bei allen unseren Sinnen. Massimiliano Di Luca und Marc Ernst vom Max-Planck-Institut in Tübingen haben nun zusammen mit ihrem Kollegen Benjamin Backus von der State Universty of New York entdeckt, dass sich die Wahrnehmung nicht nur graduell anpasst, sondern dass ganz neue Assoziationen erlernt werden können - ständig und automatisch. „Anders wäre es nicht zu erklären, dass selbst unsichtbare Signale das Sehverhalten verändern“, sagt Marc Ernst, Leiter der Arbeitsgruppe für Multisensorische Wahrnehmung am Max-Planck Institut. „Um die Welt wahrzunehmen, wie sie ist, muss jedes Baby diesen Prozess wiederholt durchlaufen und neue vorerst nicht wahrnehmbare Signale mit bekannten Sinneseindrücken kombinieren.“

Wenn neue Sinnesreize anderen, bereits bekannten Reizen entsprechen, lernt unser Gehirn diese Überschneidung. Es nutzt diese dann, um die Wahrnehmung nachhaltig zu prägen. Solche Überschneidungen sind von Vorteil, da sie die Wahrnehmung stabiler machen – fällt einmal ein Signal aus, kann das Gehirn immer noch auf das andere zurückgreifen. Massimiliano Di Luca, Marc Ernst und Benjamin Backus haben nun festgestellt, dass solche neuen Assoziationen ständig und automatisch ablaufen, ohne kognitive Einflüsse wie zum Beispiel Bewusstsein oder Aufmerksamkeit. Dazu nutzen sie einen Trick und kombinierten ein unsichtbares visuelles Signal mit einem bereits etablierten Signal.

Aber was ist ein unsichtbares visuelles Signal? Wir nehmen die Räumlichkeit der Welt mithilfe beider Augen wahr. Dabei kann es vorkommen, dass die Größe der Abbildung in den beiden Augen leicht unterschiedlich ist, zum Beispiel wenn sich ein Objekt näher an dem einen Auge als dem anderen befindet. Diesen Größenunterschied zwischen den Augen nehmen wir nicht bewusst wahr – er ist unsichtbar. Massimiliano Di Luca und seine Kollegen nutzten diesen Größenunterschied und kombinierten ihn mit der Umdrehungsrichtung eines aus Linien aufgebauten, rotierenden Zylinders (Abbildung). Je nach Größenunterschied war die Umdrehungsrichtung entweder nach oben oder nach unten gerichtet. Zum Test des Erlernten nutzten die Wissenschaftler nun eine Version des Zylinders, bei dem die Drehrichtung nicht eindeutig zu erkennen war. „Kombiniert mit dem neu erlernten, unsichtbaren Signal war es jedoch klar: War das Bild im linken Auge etwas größer, drehte sich der Zylinder subjektiv nach oben“, erzählt Massimiliano Di Luca. „Und war das Bild im rechten Auge etwas größer, drehte er sich subjektiv nach unten.“ „Damit war bewiesen, dass das neue unsichtbare Signal einen Einfluss auf die visuelle Wahrnehmung erlangt hat“, bestätigt Benjamin Backus.

Diese Studie unterstreicht die Plastizität unseres Gehirns und kann damit möglicherweise auch wichtige Hinweise für die Rehabilitation liefern. „Möglicherweise hilft unsere Studie auch besser zu verstehen, wann und unter welchen Bedingungen beispielsweise nach einem Schlaganfall – wenn Teile des Gehirns ausfallen – solch ein Ausfall mithilfe neuer Assoziationen teilweise kompensiert werden kann“, so Ernst.

Originalpublikation:
Massimiliano Di Luca, Marc O. Ernst, Benjamin T. Backus: Learning to use an invisible visual signal for perception, Current Biology (2010), doi:10.1016/j.cub.2010.09.047
Kontakt:
Dr. Massimiliano Di Luca
Tel.: 07071 601-641
E-Mail: max@tuebingen.mpg.de
Dr. Marc Ernst
Tel.: 07071 601-644
E-Mail: marc.ernst@tuebingen.mpg.de
Stephanie Bertenbreiter (Presse- Öffentlichkeitsarbeit)
Tel.: 07071 601-472
E-Mail: presse@tuebingen.mpg.de
Das Max-Planck-Institut für biologische Kybernetik forscht an der Aufklärung von kognitiven Prozessen auf experimentellem, theoretischem und methodischem Gebiet. Es beschäftigt rund 325 Mitarbeiterinnen und Mitarbeiter aus über 40 Ländern und hat seinen Sitz auf dem Max-Planck-Campus in Tübingen. Das MPI für biologische Kybernetik ist eines der 80 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Dr. Holger Fischer | Max-Planck-Institut
Weitere Informationen:
http://www.tuebingen.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kontinentalrand mit Leckage
27.03.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Neuen molekularen Botenstoff bei Lebererkrankungen entdeckt
27.03.2017 | Universitätsmedizin Mannheim

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE