Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unsichtbare Signale lehren uns das Sehen

14.10.2010
Tübinger Wissenschaftler haben entdeckt, wie unsichtbare visuelle Informationen beitragen, die Welt in einem anderen Licht zu sehen

Wie lernen wir zu sehen, was wir sehen? Woher weiß unser Gehirn, wie es das Gesehene interpretieren muss? Diesen Fragen gingen Wissenschaftler des Max-Planck-Instituts für biologische Kybernetik auf den Grund. Sie beobachten einen Lernprozess, bei dem unsichtbare Signale das Sehverhalten erwachsener Probanden veränderten. (Current Biology, 8. Oktober 2010)


Ein Zylinder aufgebaut aus horizontalen Linien: Mit Hilfe einer speziellen Brille werden die blauen Linien nur vom rechten Auge gesehen, die roten nur vom Linken. Die vertikale Größe von dem roten und dem blauen Zylinder sind leicht unterschiedlich. Dr. Massimiliano Di Luca; Max-Planck-Institut für biologische Kybernetik Tübingen

Wahrnehmungsanpassungen geschehen bei allen unseren Sinnen. Massimiliano Di Luca und Marc Ernst vom Max-Planck-Institut in Tübingen haben nun zusammen mit ihrem Kollegen Benjamin Backus von der State Universty of New York entdeckt, dass sich die Wahrnehmung nicht nur graduell anpasst, sondern dass ganz neue Assoziationen erlernt werden können - ständig und automatisch. „Anders wäre es nicht zu erklären, dass selbst unsichtbare Signale das Sehverhalten verändern“, sagt Marc Ernst, Leiter der Arbeitsgruppe für Multisensorische Wahrnehmung am Max-Planck Institut. „Um die Welt wahrzunehmen, wie sie ist, muss jedes Baby diesen Prozess wiederholt durchlaufen und neue vorerst nicht wahrnehmbare Signale mit bekannten Sinneseindrücken kombinieren.“

Wenn neue Sinnesreize anderen, bereits bekannten Reizen entsprechen, lernt unser Gehirn diese Überschneidung. Es nutzt diese dann, um die Wahrnehmung nachhaltig zu prägen. Solche Überschneidungen sind von Vorteil, da sie die Wahrnehmung stabiler machen – fällt einmal ein Signal aus, kann das Gehirn immer noch auf das andere zurückgreifen. Massimiliano Di Luca, Marc Ernst und Benjamin Backus haben nun festgestellt, dass solche neuen Assoziationen ständig und automatisch ablaufen, ohne kognitive Einflüsse wie zum Beispiel Bewusstsein oder Aufmerksamkeit. Dazu nutzen sie einen Trick und kombinierten ein unsichtbares visuelles Signal mit einem bereits etablierten Signal.

Aber was ist ein unsichtbares visuelles Signal? Wir nehmen die Räumlichkeit der Welt mithilfe beider Augen wahr. Dabei kann es vorkommen, dass die Größe der Abbildung in den beiden Augen leicht unterschiedlich ist, zum Beispiel wenn sich ein Objekt näher an dem einen Auge als dem anderen befindet. Diesen Größenunterschied zwischen den Augen nehmen wir nicht bewusst wahr – er ist unsichtbar. Massimiliano Di Luca und seine Kollegen nutzten diesen Größenunterschied und kombinierten ihn mit der Umdrehungsrichtung eines aus Linien aufgebauten, rotierenden Zylinders (Abbildung). Je nach Größenunterschied war die Umdrehungsrichtung entweder nach oben oder nach unten gerichtet. Zum Test des Erlernten nutzten die Wissenschaftler nun eine Version des Zylinders, bei dem die Drehrichtung nicht eindeutig zu erkennen war. „Kombiniert mit dem neu erlernten, unsichtbaren Signal war es jedoch klar: War das Bild im linken Auge etwas größer, drehte sich der Zylinder subjektiv nach oben“, erzählt Massimiliano Di Luca. „Und war das Bild im rechten Auge etwas größer, drehte er sich subjektiv nach unten.“ „Damit war bewiesen, dass das neue unsichtbare Signal einen Einfluss auf die visuelle Wahrnehmung erlangt hat“, bestätigt Benjamin Backus.

Diese Studie unterstreicht die Plastizität unseres Gehirns und kann damit möglicherweise auch wichtige Hinweise für die Rehabilitation liefern. „Möglicherweise hilft unsere Studie auch besser zu verstehen, wann und unter welchen Bedingungen beispielsweise nach einem Schlaganfall – wenn Teile des Gehirns ausfallen – solch ein Ausfall mithilfe neuer Assoziationen teilweise kompensiert werden kann“, so Ernst.

Originalpublikation:
Massimiliano Di Luca, Marc O. Ernst, Benjamin T. Backus: Learning to use an invisible visual signal for perception, Current Biology (2010), doi:10.1016/j.cub.2010.09.047
Kontakt:
Dr. Massimiliano Di Luca
Tel.: 07071 601-641
E-Mail: max@tuebingen.mpg.de
Dr. Marc Ernst
Tel.: 07071 601-644
E-Mail: marc.ernst@tuebingen.mpg.de
Stephanie Bertenbreiter (Presse- Öffentlichkeitsarbeit)
Tel.: 07071 601-472
E-Mail: presse@tuebingen.mpg.de
Das Max-Planck-Institut für biologische Kybernetik forscht an der Aufklärung von kognitiven Prozessen auf experimentellem, theoretischem und methodischem Gebiet. Es beschäftigt rund 325 Mitarbeiterinnen und Mitarbeiter aus über 40 Ländern und hat seinen Sitz auf dem Max-Planck-Campus in Tübingen. Das MPI für biologische Kybernetik ist eines der 80 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Dr. Holger Fischer | Max-Planck-Institut
Weitere Informationen:
http://www.tuebingen.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein Holodeck für Fliegen, Fische und Mäuse
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Wie Pflanzen ihr Gedächtnis vererben
21.08.2017 | Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik