Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unsichtbare Signale lehren uns das Sehen

14.10.2010
Tübinger Wissenschaftler haben entdeckt, wie unsichtbare visuelle Informationen beitragen, die Welt in einem anderen Licht zu sehen

Wie lernen wir zu sehen, was wir sehen? Woher weiß unser Gehirn, wie es das Gesehene interpretieren muss? Diesen Fragen gingen Wissenschaftler des Max-Planck-Instituts für biologische Kybernetik auf den Grund. Sie beobachten einen Lernprozess, bei dem unsichtbare Signale das Sehverhalten erwachsener Probanden veränderten. (Current Biology, 8. Oktober 2010)


Ein Zylinder aufgebaut aus horizontalen Linien: Mit Hilfe einer speziellen Brille werden die blauen Linien nur vom rechten Auge gesehen, die roten nur vom Linken. Die vertikale Größe von dem roten und dem blauen Zylinder sind leicht unterschiedlich. Dr. Massimiliano Di Luca; Max-Planck-Institut für biologische Kybernetik Tübingen

Wahrnehmungsanpassungen geschehen bei allen unseren Sinnen. Massimiliano Di Luca und Marc Ernst vom Max-Planck-Institut in Tübingen haben nun zusammen mit ihrem Kollegen Benjamin Backus von der State Universty of New York entdeckt, dass sich die Wahrnehmung nicht nur graduell anpasst, sondern dass ganz neue Assoziationen erlernt werden können - ständig und automatisch. „Anders wäre es nicht zu erklären, dass selbst unsichtbare Signale das Sehverhalten verändern“, sagt Marc Ernst, Leiter der Arbeitsgruppe für Multisensorische Wahrnehmung am Max-Planck Institut. „Um die Welt wahrzunehmen, wie sie ist, muss jedes Baby diesen Prozess wiederholt durchlaufen und neue vorerst nicht wahrnehmbare Signale mit bekannten Sinneseindrücken kombinieren.“

Wenn neue Sinnesreize anderen, bereits bekannten Reizen entsprechen, lernt unser Gehirn diese Überschneidung. Es nutzt diese dann, um die Wahrnehmung nachhaltig zu prägen. Solche Überschneidungen sind von Vorteil, da sie die Wahrnehmung stabiler machen – fällt einmal ein Signal aus, kann das Gehirn immer noch auf das andere zurückgreifen. Massimiliano Di Luca, Marc Ernst und Benjamin Backus haben nun festgestellt, dass solche neuen Assoziationen ständig und automatisch ablaufen, ohne kognitive Einflüsse wie zum Beispiel Bewusstsein oder Aufmerksamkeit. Dazu nutzen sie einen Trick und kombinierten ein unsichtbares visuelles Signal mit einem bereits etablierten Signal.

Aber was ist ein unsichtbares visuelles Signal? Wir nehmen die Räumlichkeit der Welt mithilfe beider Augen wahr. Dabei kann es vorkommen, dass die Größe der Abbildung in den beiden Augen leicht unterschiedlich ist, zum Beispiel wenn sich ein Objekt näher an dem einen Auge als dem anderen befindet. Diesen Größenunterschied zwischen den Augen nehmen wir nicht bewusst wahr – er ist unsichtbar. Massimiliano Di Luca und seine Kollegen nutzten diesen Größenunterschied und kombinierten ihn mit der Umdrehungsrichtung eines aus Linien aufgebauten, rotierenden Zylinders (Abbildung). Je nach Größenunterschied war die Umdrehungsrichtung entweder nach oben oder nach unten gerichtet. Zum Test des Erlernten nutzten die Wissenschaftler nun eine Version des Zylinders, bei dem die Drehrichtung nicht eindeutig zu erkennen war. „Kombiniert mit dem neu erlernten, unsichtbaren Signal war es jedoch klar: War das Bild im linken Auge etwas größer, drehte sich der Zylinder subjektiv nach oben“, erzählt Massimiliano Di Luca. „Und war das Bild im rechten Auge etwas größer, drehte er sich subjektiv nach unten.“ „Damit war bewiesen, dass das neue unsichtbare Signal einen Einfluss auf die visuelle Wahrnehmung erlangt hat“, bestätigt Benjamin Backus.

Diese Studie unterstreicht die Plastizität unseres Gehirns und kann damit möglicherweise auch wichtige Hinweise für die Rehabilitation liefern. „Möglicherweise hilft unsere Studie auch besser zu verstehen, wann und unter welchen Bedingungen beispielsweise nach einem Schlaganfall – wenn Teile des Gehirns ausfallen – solch ein Ausfall mithilfe neuer Assoziationen teilweise kompensiert werden kann“, so Ernst.

Originalpublikation:
Massimiliano Di Luca, Marc O. Ernst, Benjamin T. Backus: Learning to use an invisible visual signal for perception, Current Biology (2010), doi:10.1016/j.cub.2010.09.047
Kontakt:
Dr. Massimiliano Di Luca
Tel.: 07071 601-641
E-Mail: max@tuebingen.mpg.de
Dr. Marc Ernst
Tel.: 07071 601-644
E-Mail: marc.ernst@tuebingen.mpg.de
Stephanie Bertenbreiter (Presse- Öffentlichkeitsarbeit)
Tel.: 07071 601-472
E-Mail: presse@tuebingen.mpg.de
Das Max-Planck-Institut für biologische Kybernetik forscht an der Aufklärung von kognitiven Prozessen auf experimentellem, theoretischem und methodischem Gebiet. Es beschäftigt rund 325 Mitarbeiterinnen und Mitarbeiter aus über 40 Ländern und hat seinen Sitz auf dem Max-Planck-Campus in Tübingen. Das MPI für biologische Kybernetik ist eines der 80 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Dr. Holger Fischer | Max-Planck-Institut
Weitere Informationen:
http://www.tuebingen.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Studie entschlüsselt neue Diabetes-Gene
22.01.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft
22.01.2018 | Humboldt-Universität zu Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics