Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was uns Mäuse über die Evolution von Sprache verraten

02.06.2009
Auch wenn sie nicht sprechen können - ein Mausmodell verrät Neues über mögliche Funktionen von FOXP2

Unter der Leitung von Wolfgang Enard vom Max-Planck Institut für evolutionäre Anthropologie in Leipzig hat ein internationales Forscherteam eine wichtige Grundlage für das Verständnis der menschlichen Evolution geschaffen: Erstmals entwickelten die Forscher ein Mausmodell, mit dem sich Aspekte der Evolution von Sprache rekonstruieren lassen könnten. Die Forscher untersuchten Mäuse, die die menschliche Variante des FOXP2-Gens trugen. Die Tiere zeigten Änderungen in den neuronalen Schaltkreisen der Basalganglien, die beim Menschen vermutlich für die Evolution des Sprechens wichtig waren. (CELL, 29. Mai 2009)


Änderungen in Nervenzellen (gelb gefärbt) haben bei der Evolution der Sprache wohl eine wichtige Rolle gespielt. Dies fanden Forscher in Leipzig mittels genetisch veränderten Mäusen heraus. Bild: Max-Planck-Institut für evolutionäre Anthropologie

Welche genetischen Veränderungen ermöglichten die Ausbildung der besonderen menschlichen Eigenschaften im Verlauf der vergangenen sechs Millionen Jahre seit sich die Entwicklungslinien von Mensch und Schimpanse trennten? Das ist eine der spannendsten Fragen in der genetischen Forschung. Eine herausragende Eigenschaft des Menschen ist seine Fähigkeit zu sprechen. Zwei genetische Änderungen in dem Gen FOXP2 stehen seit längerem in Verdacht, bei der Evolution von Sprache eine Rolle gespielt zu haben. Die jetzt veröffentlichte Arbeit untersucht erstmals die funktionellen Folgen dieser genetischen Änderungen, und zwar im Modellorganismus Maus.

FOXP2 und Sprache
FOXP2 steht im Mittelpunkt von Analysen der menschlichen Evolution: Es ist das bisher einzige Gen, das gut mit der menschlichen Sprachfähigkeit assoziiert ist. Menschen, die nur eine statt zwei funktioneller Kopien dieses Gens besitzen, haben große Schwierigkeiten sprechen zu lernen; andere Fähigkeiten sind dagegen gar nicht oder wesentlich schwächer betroffen. Außerdem hat sich FOXP2 auffällig während der menschlichen Evolution geändert: Während sich in den über 100 Millionen Jahren Evolution, die Nagetiere von Primaten trennt, nur eine einzige Aminosäure im FOXP2-Protein geändert hat, sind in den letzten sechs Millionen Jahren menschlicher Evolution hingegen gleich zwei Aminosäureänderungen aufgetreten. Um diese Assoziationen funktionell zu untersuchen, etablierte die Forschungsgruppe um Wolfgang Enard am Max-Planck-Institut für evolutionäre Anthropologie ein entsprechendes Mausmodell.
"Humanisierte" Mäuse
Die Forscher änderten das Erbgut der Mäuse so, dass deren FOXP2-Gen die beiden menschlichen Änderungen besaß. Diese "humanisierten" Mäuse verglichen sie dann mit ihren normalen Geschwistern mit der mauseigenen FOXP2-Variante. In einer umfassenden Untersuchung in der Deutschen Mausklinik in München zeigte sich, dass das "humanisierte" FOXP2 keinen Einfluss auf über 200 physiologische und morphologische Parameter hatte. Abweichungen fanden sich aber in einigen Verhaltenstests, "und das deutet darauf hin, dass die menschlichen Änderungen in FOXP2 vor allem das Gehirn betreffen", sagt Wolfgang Enard.
Änderungen in neuronalen Schaltkreisen
Weitere Untersuchungen förderten auffällige Veränderungen in einem Teil des Gehirns, den sogenannten Basalganglien zutage. So zeigten Nervenzellen dort nach Stimulation eine verstärkte synaptische Plastizität - eine Reaktion, die für Lernen und Gedächtnisbildung wichtig ist. Mäuse, die nur eine funktionelle Kopie des FOXP2-Gens besaßen, offenbarten entgegengesetzte Effekte. Möglicherweise sind es Änderungen in diesen neuronalen Schaltkreisen, die bei Menschen mit nur einer funktionellen Kopie von FOXP2 zu Sprachdefiziten führen. Die zwei funktionellen Kopien der menschlichen Variante von FOXP2 sollten somit im Laufe der menschlichen Evolution das Erlernen von Sprache ermöglicht haben. "Vorstellbar wäre, dass das menschliche FOXP2-Gen eine bessere Koordination der zum Sprechen nötigen Muskeln bewirkt", spekuliert Enard.
Mäuse können zwar nicht sprechen - sie verständigen sich mit Ultraschalllauten - die Forscher fanden jedoch heraus, dass diese bei den "humanisierten" Mäusen eine leicht niedrigere Tonhöhe haben. "Um dieses Ergebnis wirklich interpretieren zu können", sagt Enard, "muss erst die Verbindung zwischen diesen angeborenen Lauten und der erlernten menschlichen Sprache besser erforscht werden." Noch sind also viele Fragen offen. Doch die Studie zeigt auf, wie man menschliche Evolution in einem Mausmodell untersuchen kann. "Das ist ein kleines, aber vielleicht wichtiges Puzzle-Teil in der menschlichen Evolution. Wir erwarten kein einfaches, wohl aber ein spannendes Puzzle", so der Max-Planck-Forscher.

[WE/CB]

Originalveröffentlichung:

Wolfgang Enard, Sabine Gehre, Kurt Hammerschmidt, Sabine M. Hölter, Torsten Blass, Mehmet Somel, Martina K. Brückner, Christiane Schreiweis, Christine Winter, Reinhard Sohr, Lore Becker, Victor Wiebe, Birgit Nickel, Thomas Giger, Uwe Müller, Matthias Groszer, Thure Adler, Antonio Aguilar, Ines Bolle, Julia Calzada-Wack, Claudia Dalke, Nicole Ehrhardt, Jack Favor, Helmut Fuchs, Valérie Gailus-Durner, Wolfgang Hans, Gabriele Hölzlwimmer, Anahita Javaheri, Svetoslav Kalaydjiev, Magdalena Kallnik, Eva Kling, Sandra Kunder, Ilona Moßbrugger, Beatrix Naton, Ildikó Racz, Birgit Rathkolb, Jan Rozman, Anja Schrewe, Dirk H. Busch, Jochen Graw, Boris Ivandic, Martin Klingenspor, Thomas Klopstock, Markus Ollert, Leticia Quintanilla-Martinez, Holger Schulz, Eckhard Wolf, Wolfgang Wurst, Andreas Zimmer, Simon E. Fisher, Rudolf Morgenstern, Thomas Arendt, Martin Hrabé de Angelis, Julia Fischer, Johannes Schwarz and Svante Pääbo
A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice
CELL, Band 137, Heft 5, 29. Mai 2009
Weitere Informationen erhalten Sie von:
Dr. Wolfgang Enard
Max-Planck-Institut für evolutionäre Anthropologie, Leipzig
Tel.: +49 341 3550-511
E-Mail: enard@eva.mpg.de
Sandra Jacob, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für evolutionäre Anthropologie, Leipzig
Tel.: +49 341 3550-122
E-Mail: jacob@eva.mpg.de

Dr. Felicitas von Aretin | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics