Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unkraut im Gehirn

11.09.2017

Alzheimer, Parkinson und Huntington – neurodegenerative Krankheiten haben eine Gemeinsamkeit: In den Nervenzellen der Patienten sammeln sich Proteinablagerungen an. Sind diese Aggregate erst einmal vorhanden, wuchern sie wie Unkraut. Ob und wie die Ablagerungen Nervenzellen schädigen und zu deren Absterben führen, ist noch weitgehend ungeklärt. Ein detaillierter Einblick in die dreidimensionale Struktur der Proteinaggregate soll den Forschern helfen, dieses Rätsel zu lösen. Wissenschaftler am Max-Planck-Institut für Biochemie konnten jetzt mittels Kryo-Elektronentomographie ein hochauflösendes, dreidimensionales Modell der für die Huntington-Krankheit verantwortlichen Aggregate erstellen.

Wild wucherndes Unkraut – der Alptraum eines jeden Gärtners. Beschneiden, Stutzen, Mähen. Eine gründliche Gartenpflege ist nötig. Wird diese vernachlässigt, nimmt das Unkraut Überhand und unterdrückt das Wachstum der Nutz- und Zierpflanzen.


Mittels Kryoelektronentomographie wurde eine hochauflösende 3D-Struktur der Huntingtin-Aggregate erstellt. Hintergrund: Rohdaten, Vordergrund: 3D-Visualisierung

© MPI für Biochemie

In unserem Körper läuft es auf Proteinebene ähnlich: Molekulare Maschinen, große Proteinkomplexe, die in Zellen lebenswichtige Prozesse steuern, übernehmen die Funktion eines Gärtners: Sie bringen Proteine in die richtige Form und hegen und pflegen diese.

Auf die richtige Form kommt es an

Damit Proteine ihre Funktion erfüllen können, müssen sie die korrekte dreidimensionale Struktur haben. Die Bausteine der Proteine, die Aminosäuren, sind in einer langen Kette aneinandergereiht und werden in eine komplexe Faltung gebracht.

Ist die entstandene Anordnung fehlerhaft, werden die defekten Proteine in einem streng regulierten Prozess abgebaut. Geschieht dies nicht, können sie verklumpen und Ablagerungen bilden. Die unlöslichen Proteinaggregate wirken toxisch auf Zellen. Das Gehirn von Patienten mit neurodegenerative Krankheiten wie Alzheimer, Parkinson oder Huntington weist häufig solche Aggregate auf.

Ob und wie genau diese Aggregate Nervenzellen schädigen, ist bisher ungeklärt. Dieser Frage gehen Experten des ToPAG (Toxic Protein AGgregation in neurodegeneration) Konsortiums nach. Ein Team von Wissenschaftlern der Abteilungen von Wolfgang Baumeister, Ulrich Hartl und Rüdiger Klein konnte eine hochauflösende 3D-Struktur der Proteinaggregate, die mit der Huntington-Krankheit assoziiert sind, innerhalb ihrer intakten zellulären Umgebung entschlüsseln.

Eiskalt unter die Lupe genommen

Möglich war dies durch eine neuartige Technik in der Strukturforschung, der Kryo-Elektronentomographie. Dabei werden Zellen blitzartig eingefroren und am Elektronenmikroskop zweidimensionale Aufnahmen aus verschiedenen Winkeln erstellt. Die Forscher können die entstandenen Bilder dann – wie Teile eines 3D-Puzzles – am Computer zu einem hochaufgelösten Modell zusammensetzen.

„Mit dieser Methode können wir eine Momentaufnahme der Struktur von Proteinen in intakten Zellen erstellen und analysieren, mit welchen anderen Zellbestandteilen diese Proteine interagieren“, erklärt Rubén Fernández-Busnadiego, Koordinator der Studie, die Besonderheiten dieser Technik.

Als die Wissenschaftler Nervenzellen mit Proteinablagerungen unter die Lupe nahmen, fanden sie Einschlusskörper, bestehend aus verklebten, faserartigen Bündeln des Huntingtin-Proteins (Fibrillen). Bei Patienten, die von der Huntington-Krankheit betroffen sind, ist dieses Protein aufgrund einer Veränderung eines einzelnen Gens fehlerhaft: Die DNA, die Bauanleitung der Proteine, enthält aneinandergereiht mehrfache Kopien einer bestimmten Sequenz. Im fertigen Protein wird deswegen vermehrt der Proteinbaustein Glutamin an das Ende angeheftet. Die fehlerhaften Huntingtin-Proteine sind dadurch besonders klebrig und verklumpen leicht zu unlöslichen Knäueln.

„Mit der Zeit lagern sich immer mehr solcher Proteinaggregate ab“, erklärt Felix Bäuerlein, Erstautor der Studie. Um beim Vergleich zur Gartenarbeit zu bleiben: In Gehirnzellen wuchert es wie Unkraut. Wo es einmal wächst und nicht säuberlich entfernt wird, vermehrt sich das Unkraut. Und wie dieses in das Pflanzenbeet einwächst und Nutz- und Zierpflanzen verdrängt, wirken die verklumpten Proteine auf benachbarte Zellbestandteile und Proteine.

„Breiten sich die Ablagerungen aus, verformen sie an den Kontaktstellen die Membranen umliegender Zellbestandteile. Teilweise kann das zum Zerreißen dieser Hülle führen“, so Bäuerlein. Eine der betroffenen Zellstrukturen ist beispielsweise das Endoplasmatische Retikulum. Womöglich wird so die Funktion gesunder Organellen und Proteine beeinträchtigt. „Wir gehen davon aus, dass auf diese Weise nach und nach die Infrastruktur der Zelle zerstört wird“, schlussfolgert Fernández-Busnadiego.

Bisherige Therapien behandeln nur die Symptome neurodegenerativer Erkrankungen, eine Heilung der Patienten ist noch nicht möglich. „Mithilfe der Struktur der Proteinaggregate wollen wir die toxische Wirkung auf Nervenzellen besser verstehen. Auf dieser Grundlage erhoffen wir uns, in Zukunft neuartige Behandlungsansätze zu finden“, gibt sich Fernández-Busnadiego optimistisch. [SiM]

Originalpublikation:
F. Bäuerlein, I. Saha, A. Mishra, M. Kalemanov, A. Martínez-Sánchez, R. Klein, I. Dudanova, M.S. Hipp, F.U. Hartl, W. Baumeister, & R. Fernández-Busnadiego: In Situ Architecture and Cellular Interactions of PolyQ Inclusions, Cell, September 2017
DOI: 10.1016/j.cell.2017.08.009

---
Über Rubén Fernández-Busnadiego
Rubén Fernández-Busnadiego studierte Physik an der Universidad Complutense de Madrid in Spanien. Nachdem er 2010 an der chemischen Fakultät der Technischen Universität in München promovierte, arbeitete er im Rahmen eines zweijährigen PostDoc Aufenthalts an der Yale University School of Medicine in New Haven, CT, USA. Seit 2013 ist er Projektgruppenleiter in der Abteilung Molekulare Strukturbiologie von Wolfgang Baumeister. Fernández-Busnadiego und sein Team erforschen die strukturelle Grundlage toxischer Proteinablagerungen bei neurodegenerativen Erkrankungen. Mithilfe neuartiger Mikroskopietechniken werden ultrahohe Auflösungen erreicht. Fernández-Busnadiego wurde 2017 mit dem FEBS Anniversary Prize ausgezeichnet.

Über das Max-Planck-Institut für Biochemie
Das Max-Planck-Institut für Biochemie (MPIB) in Martinsried bei München zählt zu den führenden internationalen Forschungseinrichtungen auf den Gebieten der Biochemie, Zell- und Strukturbiologie sowie der biomedizinischen Forschung und ist mit rund 35 wissenschaftlichen Abteilungen und Forschungsgruppen und ungefähr 800 Mitarbeitern eines der größten Institute der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Das MPIB befindet sich auf dem Life-Science-Campus Martinsried in direkter Nachbarschaft zu dem Max-Planck-Institut für Neurobiologie, Instituten der Ludwig-Maximilians-Universität München und dem Innovations- und Gründerzentrum Biotechnologie (IZB). (http://biochem.mpg.de)

Über ToPAG
Neurodegenerative Erkrankungen wie Alzheimer, Parkinson oder die Huntington zeichnen sich durch toxische Proteinablagerungen in bestimmten Gehirnregionen aus. Wie genau diese Aggregate Nervenzellen schädigen und zu deren Absterben führen, erforscht das ToPAG (Toxic Protein AGgregation in neurodegeneration) Konsortium, ein Zusammenschluss von Wissenschaftlern der beiden Max-Planck-Institute in Martinsried bei München. Wolfgang Baumeister, Ulrich Hartl und Matthias Mann, Direktoren am MPI für Biochemie, und Rüdiger Klein, Direktor am MPI für Neurobiologie, leiten dieses interdisziplinäre Forschungsprojekt. Sie kombinieren verschiedene Methoden der zellulären Biochemie, Proteomics und Kryo-Elektronentomographie, um die grundlegenden Mechanismen der Toxizität von Proteinaggregaten aufzuklären. Das Projekt wird vom Europäischen Forschungsrat (ERC) gefördert. (http://www.topag.mpg.de)

Kontakt:
Dr. Rubén Fernández-Busnadiego
Molekulare Strukturbiologie
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: ruben@biochem.mpg.de
www.biochem.mpg.de/baumeister

Dr. Christiane Menzfeld
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de
www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de - Webseite des Max-Planck-Institutes für Biochemie

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik