Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Universität Tübingen an der Entwicklung individueller Impfstoffe zur Krebsbehandlung beteiligt

04.07.2013
Im EU-finanzierten Konsortium GAPVAC bündeln 14 europäische und US-amerikanische Einrichtungen ihre Aktivitäten bei der Entwicklung individueller Impfstoffe für Patienten mit Hirntumoren.

Ein hoch innovatives Projekt zur Entwicklung einer neuen Klasse von Krebsimpfstoffen, die in der Behandlung von Patienten mit Hirntumoren eingesetzt werden sollen, geht an den Start: Dazu haben sich 14 Biotechnologiefirmen und Forschungseinrichtungen unter dem Namen GAPVAC (Glioma Actively Personalized VAccine Consortium – Konsortium für die individuelle aktive Impfung gegen Hirntumore) zusammengeschlossen.

GAPVAC wird über das 7. Forschungsrahmenprogramm der Europäischen Union mit sechs Millionen Euro gefördert. Die Arbeitsgruppe von Professor Hans-Georg Rammensee vom Interfakultären Institut für Zellbiologie (IFIZ) der Universität Tübingen wird im Wirkstoffpeptidlabor der Medizinischen Fakultät die Herstellung der individuellen Impfstoffe übernehmen.

Das Konsortium GAPVAC wird von der immatics biotechnologies GmbH, einem Spin-off-Unternehmen der Universität Tübingen aus der Abteilung von Professor Rammensee mit Sitz in Tübingen und München, und der BioNTech AG in Mainz koordinierend geleitet. Beide Firmen widmen sich der Entwicklung von Krebstherapien über einen Ansatz mit Biomarkern.

Die Grundidee besteht darin, bei der Behandlung von Krebs die Fähigkeiten des menschlichen Immunsystems zu nutzen, das Zellen mit fremden Strukturen wie Krankheitserreger oder schadhafte eigene Zellen erkennen und vernichten kann. Die Zellen eines bösartigen Tumors tragen spezifische und bei jedem Patienten individuelle Strukturen, auf die das eigene Immunsystem gezielt angesetzt werden soll.

Im Projekt GAPVAC sollen die dafür benötigten individuellen aktiven Impfstoffe (APVACs) für jeden einzelnen Patienten und sein Immunsystem designt und hergestellt werden. Die Projektpartner kombinieren zur Entwicklung der optimalen Therapie neueste Technologie wie Sequenzierungsverfahren der neuen Generation, hochempfindliche Massenspektrometrie und Ansätze aus dem Immunomonitoring, mit dem Forscher die durch eine Impfung ausgelöste Antwort des Immunsystems messen. Sie konzentrieren sich auf das Glioblastom, eine aggressive Form des Hirntumors mit schlechter Prognose, bei dem mit den bisherigen Behandlungsmöglichkeiten die Lebenszeit kaum verlängert werden kann.

Mit dem Projekt wollen die Forschungs- und Industriepartner zeigen, dass die neuartigen Impfstoffe, die APVACs, für die Patienten gut verträglich sind und eine starke spezifische Immunantwort gegen die Krebszellen auslösen. Sie wollen auch demonstrieren, dass dieser individualisierte Ansatz in der Behandlung machbar ist.

Die Firmen immatics und BioNTech wollen diesen individuellen Ansatz in der Immuntherapie in die klinische Entwicklung bringen. Kern des Projekts GAPVAC ist eine klinische Studie der Phase I, in die 30 Patienten mit neu diagnostiziertem Glioblastom aufgenommen werden sollen und die voraussichtlich im kommenden Jahr beginnt. Sobald der chirurgische Eingriff und die Anfangsradiochemotherapie abgeschlossen sind, werden die Patienten neben einer Chemotherapie, wie sie bisher Standard in der Behandlung ist, wiederholt mit einem jeweils individuell hergestellten Impfstoff immunisiert. Die klinische Studie wird von den Universitätskliniken in Heidelberg und Genf geleitet; die Universitätsklinik für Neurochirurgie in Tübingen unter Leitung von Professor Marcos Tatagiba ist beteiligt.

Das GAPVAC-Programm wäre ohne die Peptidherstellung im Wirkstoffpeptidlabor der Medizinischen Fakultät der Universität Tübingen, das mit seiner Zulassung als GMP-Labor (Good Manufacturing Practice) höchsten medizinischen Ansprüchen genügt, nicht denkbar. Unter der Leitung von Professor Stefan Stevanoviæ vom IFIZ der Universität Tübingen werden dort die APVAC-Impfstoffe „on demand“ produziert.

Die Firma immatics übernimmt die Aufgabe, bei jedem Patienten die speziell von den Krebstumorzellen gebildeten Peptide, das sind kurzkettige Eiweißstoffe, aufzuspüren und zu analysieren, gegen welche ein APVAC-Impfstoff am besten einzusetzen wäre. BioNTech trägt weitere Komponenten für die Impfung gegen Glioblastome bei. Weitere Partner im Projekt GAPVAC sind Firmen, Kliniken und Forschungseinrichtungen in Dänemark, den Niederlanden, Großbritannien, Spanien, Israel und den USA.

Kontakt:
Prof. Dr. Hans-Georg Rammensee
Universität Tübingen
Medizinische und Mathematisch-Naturwissenschaftliche Fakultät
Interfakultäres Institut für Zellbiologie
Telefon +49 7071 29-87628
rammensee[at]uni-tuebingen.de

Myriam Hönig | idw
Weitere Informationen:
http://www.gapvac.eu

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung
26.04.2017 | Universität Ulm

nachricht Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt
26.04.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung

26.04.2017 | Biowissenschaften Chemie

Naturkatastrophen kosten Winzer jährlich Milliarden

26.04.2017 | Interdisziplinäre Forschung

Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt

26.04.2017 | Biowissenschaften Chemie