Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Universität Tübingen an der Entwicklung individueller Impfstoffe zur Krebsbehandlung beteiligt

04.07.2013
Im EU-finanzierten Konsortium GAPVAC bündeln 14 europäische und US-amerikanische Einrichtungen ihre Aktivitäten bei der Entwicklung individueller Impfstoffe für Patienten mit Hirntumoren.

Ein hoch innovatives Projekt zur Entwicklung einer neuen Klasse von Krebsimpfstoffen, die in der Behandlung von Patienten mit Hirntumoren eingesetzt werden sollen, geht an den Start: Dazu haben sich 14 Biotechnologiefirmen und Forschungseinrichtungen unter dem Namen GAPVAC (Glioma Actively Personalized VAccine Consortium – Konsortium für die individuelle aktive Impfung gegen Hirntumore) zusammengeschlossen.

GAPVAC wird über das 7. Forschungsrahmenprogramm der Europäischen Union mit sechs Millionen Euro gefördert. Die Arbeitsgruppe von Professor Hans-Georg Rammensee vom Interfakultären Institut für Zellbiologie (IFIZ) der Universität Tübingen wird im Wirkstoffpeptidlabor der Medizinischen Fakultät die Herstellung der individuellen Impfstoffe übernehmen.

Das Konsortium GAPVAC wird von der immatics biotechnologies GmbH, einem Spin-off-Unternehmen der Universität Tübingen aus der Abteilung von Professor Rammensee mit Sitz in Tübingen und München, und der BioNTech AG in Mainz koordinierend geleitet. Beide Firmen widmen sich der Entwicklung von Krebstherapien über einen Ansatz mit Biomarkern.

Die Grundidee besteht darin, bei der Behandlung von Krebs die Fähigkeiten des menschlichen Immunsystems zu nutzen, das Zellen mit fremden Strukturen wie Krankheitserreger oder schadhafte eigene Zellen erkennen und vernichten kann. Die Zellen eines bösartigen Tumors tragen spezifische und bei jedem Patienten individuelle Strukturen, auf die das eigene Immunsystem gezielt angesetzt werden soll.

Im Projekt GAPVAC sollen die dafür benötigten individuellen aktiven Impfstoffe (APVACs) für jeden einzelnen Patienten und sein Immunsystem designt und hergestellt werden. Die Projektpartner kombinieren zur Entwicklung der optimalen Therapie neueste Technologie wie Sequenzierungsverfahren der neuen Generation, hochempfindliche Massenspektrometrie und Ansätze aus dem Immunomonitoring, mit dem Forscher die durch eine Impfung ausgelöste Antwort des Immunsystems messen. Sie konzentrieren sich auf das Glioblastom, eine aggressive Form des Hirntumors mit schlechter Prognose, bei dem mit den bisherigen Behandlungsmöglichkeiten die Lebenszeit kaum verlängert werden kann.

Mit dem Projekt wollen die Forschungs- und Industriepartner zeigen, dass die neuartigen Impfstoffe, die APVACs, für die Patienten gut verträglich sind und eine starke spezifische Immunantwort gegen die Krebszellen auslösen. Sie wollen auch demonstrieren, dass dieser individualisierte Ansatz in der Behandlung machbar ist.

Die Firmen immatics und BioNTech wollen diesen individuellen Ansatz in der Immuntherapie in die klinische Entwicklung bringen. Kern des Projekts GAPVAC ist eine klinische Studie der Phase I, in die 30 Patienten mit neu diagnostiziertem Glioblastom aufgenommen werden sollen und die voraussichtlich im kommenden Jahr beginnt. Sobald der chirurgische Eingriff und die Anfangsradiochemotherapie abgeschlossen sind, werden die Patienten neben einer Chemotherapie, wie sie bisher Standard in der Behandlung ist, wiederholt mit einem jeweils individuell hergestellten Impfstoff immunisiert. Die klinische Studie wird von den Universitätskliniken in Heidelberg und Genf geleitet; die Universitätsklinik für Neurochirurgie in Tübingen unter Leitung von Professor Marcos Tatagiba ist beteiligt.

Das GAPVAC-Programm wäre ohne die Peptidherstellung im Wirkstoffpeptidlabor der Medizinischen Fakultät der Universität Tübingen, das mit seiner Zulassung als GMP-Labor (Good Manufacturing Practice) höchsten medizinischen Ansprüchen genügt, nicht denkbar. Unter der Leitung von Professor Stefan Stevanoviæ vom IFIZ der Universität Tübingen werden dort die APVAC-Impfstoffe „on demand“ produziert.

Die Firma immatics übernimmt die Aufgabe, bei jedem Patienten die speziell von den Krebstumorzellen gebildeten Peptide, das sind kurzkettige Eiweißstoffe, aufzuspüren und zu analysieren, gegen welche ein APVAC-Impfstoff am besten einzusetzen wäre. BioNTech trägt weitere Komponenten für die Impfung gegen Glioblastome bei. Weitere Partner im Projekt GAPVAC sind Firmen, Kliniken und Forschungseinrichtungen in Dänemark, den Niederlanden, Großbritannien, Spanien, Israel und den USA.

Kontakt:
Prof. Dr. Hans-Georg Rammensee
Universität Tübingen
Medizinische und Mathematisch-Naturwissenschaftliche Fakultät
Interfakultäres Institut für Zellbiologie
Telefon +49 7071 29-87628
rammensee[at]uni-tuebingen.de

Myriam Hönig | idw
Weitere Informationen:
http://www.gapvac.eu

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein Holodeck für Fliegen, Fische und Mäuse
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Wie Pflanzen ihr Gedächtnis vererben
21.08.2017 | Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik