Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Understanding the Electricity of Breast Cancer Cells

01.04.2010
Research Could Lead to the Development of Earlier Detection

Building on previous findings demonstrating that breast cancer cells emit unique electromagnetic signals, engineering researchers at the University of Arkansas have found that a single cancerous cell produces electric signals proportional to the speed at which the cell divides. Their model reveals that heightened movement of ions at the boundary of the cancerous cell produces larger electrical signals.

The findings will help scientists understand the biophysics associated with rapidly dividing breast cancer cells and may contribute to the development of new detection and treatment techniques.

“All cells maintain a difference in voltage between their intracellular and extracellular media,” said Ahmed Hassan, doctoral student in electrical engineering. “Previous work found that MCF-7, a standard breast cancer cell line, hyperpolarizes – meaning simply that it increases its membrane voltage in negative polarity – during two critical stages prior to cell division. What we’re trying to do is build a better understanding of how this complicated mechanism works.”

Hassan works under the direction of Magda El-Shenawee, associate professor of electrical engineering. In previous work, El-Shenawee created a microwave-imaging system that provides sharp, three-dimensional images of hard objects buried within soft tissue. She was able to do this by transmitting and receiving electromagnetic waves that traveled through soft tissue and bounced off the hard object.

The new direction of El-Shenawee’s research does not require transmission of electromagnetic waves. Rather, in a process known as passive biopotential diagnosis – special sensors only receive electromagnetic waves. They read the unique signals released by activity within and around a growing tumor. As mentioned above, Hassan and El-Shenawee focused on a single cell, which may help researchers recognize abnormalities long before cell aggregates reach the tumor stage. A 1-millimeter tumor comprises tens of thousands of cells.

To understand the biomagnetic signals of a single breast cancer cell, Hassan and El-Shenawee created a two-dimensional, biophysics-based model with computer simulations that allowed them to obtain densities of electrical current based on space and time. They then integrated the current densities to calculate the biomagnetic fields produced by a cancerous lesion. The model avoided the risk of oversimplification by placing the cell in a semi-finite, dynamic environment with realistic anatomical features such as cell membranes, blood vessels and surrounding tissue boundaries.

They focused on hyperpolarization during what is known as the G1/Synthesis transition, a critical process that occurs within a cell before it starts to divide. During the G1 stage, the cell grows and proteins are created. The Synthesis stage includes DNA synthesis and chromosome replication to provide a new set of chromosomes for a new cell. As Hassan mentioned, previous experimental measurements on cancerous MCF-7 cells revealed that during the transition between the G1 and Synthesis stages, electrical changes occurred.

The numerical results of the Arkansas research validated the findings above. Beyond this, Hassan and El-Shenawee discovered that shorter G1/Synthesis-transition durations and heightened movement of ions at the cell boundary was associated with a higher magnitude of electromagnetic signals.

In a future study, the researchers will couple the single-cell model with a tumor-growth model to produce simulations of electric signals created by a whole tumor.

“We are motivated to provide a tool for understanding experimental measurements that prove that growing tumor cells indeed generate electric signals,” El-Shenawee said. “This multidisciplinary model has the potential to advance the biopotential diagnosis system to achieve high accuracy in measuring benign versus malignant tumors. Another benefit is that there would be no side effects, as no chemical or radiation would be sent into the body.”

The researchers’ computer modeling work was done using Star of Arkansas, a supercomputer in the Arkansas High Performance Computing Center at the University of Arkansas.

Their study was published in a recent issue of IEEE Transactions on Biomedical Engineering. Copies of the study are available upon request.

CONTACTS:
Magda El-Shenawee, associate professor, electrical engineering
College of Engineering
479-575-6582, magda@uark.edu
Ahmed Hassan, doctoral student, electrical engineering
College of Engineering
479-575-7757, amhassan@uark.edu
Matt McGowan, science and research communications officer
University Relations
479-575-4246, dmcgowa@uark.edu

Matt McGowan | Newswise Science News
Further information:
http://www.uark.edu

More articles from Life Sciences:

nachricht No chance for house dust mites
06.05.2015 | Hohenstein Institute

nachricht Expedition Genomics Lab: the mobile revolution in genetic analysis
06.05.2015 | MUSE Museo delle Scienze

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sprühtrocknen partikelgenau unter der virtuellen Lupe

Das Sprühtrocknen ist ein verbreiteter Herstellungsprozess, um Keramikgranulate für technische Bauteile oder Zahnersatz herzustellen, oder um gelöste medizinische Wirkstoffe, Lebensmittelzusätze oder Milch zu Pulver zu verarbeiten. Mit einer am Fraunhofer-Institut für Werkstoffmechanik IWM entwickelten Simulationsmethode ist nun exakter nachvollziehbar, wie sich die Teilchen im Lösungsmittel während des Sprühtrocknens verhalten. Damit können Pulver- und Granulathersteller gezielter die Eigenschaften ihrer Produkte einstellen und ihren Ausschuss verringern.

Bisher ist es bei Granulat- und Pulverherstellern unüblich, Simulationen auf Granulenebene für Produktverbesserungen zu nutzen. Um neue Produkte zu entwickeln...

Im Focus: Spray drying the precision particle under the virtual magnifying glass

Spray drying is a common manufacturing process, used in the production of ceramic granulate for technical components or dental prostheses as well as dissolvable medicinal substances, food additives and in the processing of milk into powder. Using computer simulation methodology developed by scientists at the Fraunhofer Institute for Mechanics of Materials IWM, a more comprehensible understanding can now be gained of the behavior of particles in solvent during the spray drying process. This allows powder and granulate manufacturers to specifically adjust the properties of their products while reducing waste.

Previously, it was unusual for granule and powder producers to use granulation simulations to improve their products. For new product development or process...

Im Focus: Speziallabor ProVIS nimmt Betrieb auf

Am Mittwoch wurde am Helmholtz-Zentrum für Umweltforschung (UFZ) ein Speziallabor eröffnet, das neue Maßstäbe setzt: Das Sächsische Zentrum zur Visualisierung biochemischer Prozesse auf zellulärer Ebene – kurz ProVIS – wird künftig tiefere Einblicke in den Stoffwechsel von Mikroorganismen erlauben.

Die weltweit einmalige Kombination modernster Geräte ermöglicht es, sowohl einzelne Zellen als auch das Zusammenspiel ganzer Lebensgemeinschaften detailliert...

Im Focus: Superzyklen am Plattenrand

Wenn Erdplatten untereinander abtauchen oder kollidieren, bebt die Erde wie jüngst in Nepal. Forscher der ETH Zürich liefern neue Erklärungsansätze für die Entstehung von Superbeben entlang von Subduktionszonen am Beispiel der Küste Japans.

Am 11. März 2011 entlud sich vor der Küste Japans die Spannung zweier verkeilter Erdplatten unter dem Meeresboden und löste einen gewaltigen Tsunami aus.

Im Focus: The random raman laser: A new light source for the microcosmos

Texas A&M University researchers demonstrate how a narrow-band strobe light source for speckle-free imaging has the potential to reveal microscopic forms of life

In modern microscope imaging techniques, lasers are used as light sources because they can deliver fast pulsed and extremely high-intensity radiation to a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Stuttgarter Gespräch: Innovationsmanagement

06.05.2015 | Veranstaltungen

7. Ökonomiekongress am 07. & 08. Mai 2015

06.05.2015 | Veranstaltungen

Effiziente Getriebe, die den Fahrer begeistern

06.05.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Stuttgarter Gespräch: Innovationsmanagement

06.05.2015 | Veranstaltungsnachrichten

7. Ökonomiekongress am 07. & 08. Mai 2015

06.05.2015 | Veranstaltungsnachrichten

Mehr Lichtteilchen durch optische Nanofaser

06.05.2015 | Physik Astronomie