Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unbekannte Proteinkomplexe leichter entschlüsseln

15.08.2017

HZI-Forscher entwickeln neue Plattform zur Aufklärung von großen Protein- und Nukleinsäurestrukturen bei Infektionen

Um neue Arzneimittel gegen Infektionskrankheiten entwickeln zu können, müssen Forscher die molekularen Grundlagen verstehen. Wie läuft die Vermehrung eines Erregers ab, welche Wechselwirkungen finden zwischen ihm und der Wirtszelle statt und wie werden diese Vorgänge reguliert?


Beispiel für eine komplexe Proteinstruktur, die mit dem M3 Framework berechnet wurde: das Box C/D-Enzym zur RNA-Methylierung.

HZI/Karaca et al. 2017

Dazu werden RNA-Proteinkomplexe untersucht. Sie spielen zu verschiedenen Zeitpunkten im Lebenszyklus des Erregers oder der Wirtszelle eine wichtige Rolle und sind so an Infektionsprozessen beteiligt.

Forscher des Helmholtz-Zentrums für Infektionsforschung (HZI), der Leibniz Universität Hannover, des EMBL Heidelberg und des Bijvoet Center for Biomolecular Research der Universität Utrecht entwickelten jetzt eine integrierte Strukturanalyse-Plattform, die große Proteinkomplexe auf Basis vielfältiger experimenteller Daten sehr einfach und effektiv berechnen kann.

Das sogenannte „M3 Framework“ steht kostenlos für Forscher aus akademischen Instituten und der Industrie zur Verfügung. Ihre Ergebnisse veröffentlichten die Forscher im renommierten Fachjournal Nature Methods.

Wie winzige Maschinen verrichten Proteine in unserem Körper harte Arbeit. Praktisch alle Prozesse werden durch diese hochspezialisierten Eiweißmoleküle ausgeführt oder gesteuert. Sie übertragen Signale, wandeln Energie um, bringen chemische Reaktionen in Gang oder sorgen für Wachstum und Bewegung.

Diese teilweise sehr komplexen Proteinmaschinen, wie beispielsweise RNA-Polymerasen, sind in ihrer Struktur und Funktion nicht einfach zu entschlüsseln. Üblicherweise nutzen Wissenschaftler dafür Methoden der Proteinkristallographie oder der Elektronenmikroskopie. Diese Methoden haben allerdings den Nachteil, dass sie die natürliche Form und Funktion der Proteine und Nukleinsäuren beeinträchtigen können.

Prof. Teresa Carlomagno, Leiterin der Arbeitsgruppe „NMR-basierte Strukturbiologie“ am HZI, verfolgt deshalb eine andere Herangehensweise: Sie erforscht große RNA-Proteinkomplexe in Lösung mit der Kernspinresonanzspektroskopie (kurz NMR für nuclear magnetic resonance-Spektroskopie).

Dies ist ein Verfahren zur Untersuchung der elektronischen Umgebung einzelner Atome und der Wechselwirkungen mit den Nachbaratomen. „Der große Vorteil der Methode besteht darin, dass wir komplexe Proteinmaschinen als aktive Enzyme bei der Arbeit mit ihrer natürlichen dynamischen Faltung und Form erleben können“, sagt Teresa Carlomagno.

Das Team um Carlomagno ging noch einen Schritt weiter und entwickelte jetzt eine moderne Plattform, die in der Lage ist, verschiedenartige experimentelle Daten zu integrieren. „Die Daten können beispielsweise aus Mutationsanalysen, der NMR-Spektroskopie, der Elektronenmikroskopie, der Fluoreszenzspektroskopie oder dem Modelling stammen“, sagt Teresa Carlomagno.

„Durch die Kombination aller Methoden ist eine Berechnung des Proteinkomplexes möglich, der uns eine erste Idee gibt, womit wir es zu tun haben. Gleichzeitig gibt die M3-Plattform den Wissenschaftlern auch Hinweise, wenn Daten noch nicht ausreichen und weitere Experimente notwendig sind, um die Proteinmaschine akkurat zu beschreiben.“

Viel Gelegenheit zur Forschung und zum Einsatz der M3-Plattform haben Teresa Carlomagno und ihr Team derzeit in engen Kooperationen mit weiteren HZI-Arbeitsgruppen. Gemeinsam mit dem Team von Prof. Rolf Müller am Helmholtz-Institut für Pharmazeutische Forschung Saarland in Saarbrücken untersuchen die Forscher beispielsweise bislang unbekannte Proteinmaschinen, die antiinfektive Wirkstoffe bilden. Diese werden dringend in der Entwicklung neuer Antibiotika benötigt.

Über das „M3 Framework“:
Das M3 Framework ist eine breit anwendbare und nutzerfreundliche Plattform, die einzelne und sehr gemischte strukturelle und biochemische Daten unterschiedlicher Herkunft effektiv integriert und eine atomare Struktur von komplexen Molekülstrukturen berechnen kann. Das Protokoll der Plattform beruht auf der HADDOCK-Anwendung, die öffentlich zugänglich ist. Das M3 Framework ist eine leicht verständliche und intuitiv nutzbare Plattform. Nutzer brauchen keine besonderen Computer oder Programmierkenntnisse, um mit M3 zu arbeiten. Die Anwendung steht öffentlich zum Download zur Verfügung unter dem Link: https://github.com/ezgikaraca/ISD-files.

Die Pressemitteilung und Bildmaterial finden Sie auch auf unserer Webseite unter dem Link https://www.helmholtz-hzi.de/de/aktuelles/news/ansicht/article/complete/unbekann...

Originalpublikation:
Ezgi Karaca, João P. G. L. M. Rodrigues, Andrea Graziadei, Alexandre M. J. J. Bonvin, Teresa Carlomagno: M3: an integrative framework for structure determination of molecular machines. Nature Methods, 2017, DOI: 10.1038/nmeth.4392

Das Helmholtz-Zentrum für Infektionsforschung:
Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern. http://www.helmholtz-hzi.de

Ihre Ansprechpartner:
Susanne Thiele, Pressesprecherin
susanne.thiele@helmholtz-hzi.de
Dr. Andreas Fischer, Wissenschaftsredakteur
andreas.fischer@helmholtz-hzi.de

Helmholtz-Zentrum für Infektionsforschung GmbH
Presse und Kommunikation
Inhoffenstraße 7
D-38124 Braunschweig

Tel.: 0531 6181-1400; -1405

Susanne Thiele | Helmholtz-Zentrum für Infektionsforschung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie