Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Umweltfreundliche chemische Reaktion verschwendet keine Atome

04.03.2014

In der Arbeitsgruppe von Nuno Maulide, Chemiker an der Universität Wien, wurde eine neue chemische Synthese für α-arylierte Carbonylverbindungen entwickelt.

Vertreter dieser Substanzklasse zeigen interessante biologische und pharmakologische Eigenschaften und kommen z.B. bei entzündungshemmenden Medikamenten zur Anwendung.

Postdoc Langui Xie und Nuno Maulide, Professor für Organische Synthese an der Universität Wien

Postdoc Langui Xie und Nuno Maulide, Professor für Organische Synthese an der Universität Wien, präsentieren ihre neue, umweltschonende Transformation. "H+" steht für den "grünen" Katalysator.

(Copyright: Arbeitsgruppe Maulide, Universität Wien)

Die neue Technik, mit der sich solche Carbonylverbindungen einfach, effizient und umweltfreundlich – ohne Verschwendung von Atomen – herstellen lassen, erregt in der Wissenschaft derzeit hohe Aufmerksamkeit. Die Publikation im Fachmagazin "Angewandte Chemie" wurde von der Redaktion als sehr wichtig eingestuft.

Vom zufälligen Ergebnis zum rationalen Design

In der organischen Chemie gibt es nach wie vor Überraschungen, z.B. wenn neue Eigenschaften bei Stoffen und Reaktionen entdeckt werden. Beispielsweise eine neue Reaktivität, also die Fähigkeit eines Stoffes, eine chemische Reaktion einzugehen, liefert ein tieferes Verständnis der an der Reaktion beteiligten Faktoren. ChemikerInnen können im Idealfall darauf aufbauend neue Transformationen entwickeln.

"Unser ursprüngliches, zufälliges Ergebnis war eine ungewöhnliche Transformation von Amiden, das sind chemische Verbindungen, die sich formal von Ammoniak und Carbonsäuren ableiten: Durch Zugabe von einem Aktivator entstand zunächst ein reaktives Intermediat – also ein Zwischenprodukt, das in der Folge eine 'Gerüstumlagerung' einging.

Hierbei wurden in einigen Bereichen des Moleküls die Atome neu angeordnet und es entstand ein völlig anderer Verbindungstyp. Diese Kenntnisse nutzten wir auch bei der vorliegenden Säure-katalysierten Redox-Arylierung.

Es gelang uns auch schon, auf Basis der aktuellen Forschungsergebnisse weitere nützliche Transformationen zu entwerfen", so Nuno Maulide, seit Oktober 2013 Professor für Organische Synthese an der Universität Wien. Maulide publizierte zu diesem Thema bereits 2010 im Fachmagazin "Angewandte Chemie".

Neu: Nur ein Katalysator anstelle mehrerer Reagenzien

In den meisten organischen Reaktionen findet eine Änderung in der Oxidationsstufe statt. Oxidationen erhöhen die Oxidationsstufe, während Reduktionen sie verringern. Beide Reaktionen benötigen ein externes Reagenz, also ein Oxydations- oder Reduktionsmittel. Diese produzieren aufgrund ihrer Verwendung während der Reaktion Abfallprodukte. In der neuen Klasse der "Redox-neutralen" Reaktionen verlaufen beide Schritte – sowohl Oxidation als auch Reduktion – gleichzeitig ab. Das macht den Zusatz von weiteren Reagenzien überflüssig. "Die von uns beschriebene Arylierung benötigt nur einen Katalysator und keine weiteren Reagenzien", erklärt Langui Xie, Mitautor der Studie und Post-doc in der internationalen Maulide-Gruppe an der Universität Wien.

Nachhaltigkeit: Es werden keine Atome verschwendet

Die neue Vorgehensweise bei arylierten Carbonylverbindungen ist in der wissenschaftlichen Community auf großes Interesse gestoßen – nicht zuletzt deshalb, weil α-arylierte Carbonyle interessante biologische und pharmakologische Eigenschaften besitzen. Bisher wurde in diesem Bereich mit Übergangsmetall-katalysierten Reaktionen gearbeitet, d.h. es wurden Übergangsmetall-Reagenzien verwendet – mit unvermeidlichen Nachteilen: Verunreinigung des Produkts, hohe Kosten für den Katalysator und großer Aufwand für spezielle Reaktionsbedingungen. "Unsere neu entwickelte Transformation benötigt keinen Metallkatalysator und beruht auf einer sogenannten 'Atome sparenden' Methode, denn, um das Produkt herzustellen, werden alle Atome der Ausgangsmaterialien verwendet. Die Gesamtzahl der Atome bleibt erhalten, es werden also keine Atome mehr verschwendet", so Chemiker Nuno Maulide abschließend.

Publikation:
Bo Peng, Xueliang Huang, Lan-Gui Xie und Nuno Maulide: A Bronsted Acid-Catalyzed Redox Arylation. In: Angewandte Chemie, Int. Ed. 2014. DOI: 10.1002/ange.201310865
http://onlinelibrary.wiley.com/doi/10.1002/ange.201310865/abstract

Wissenschaftlicher Kontakt
Univ.-Prof. Dr. Nuno Maulide
Institut für Organische Chemie
Universität Wien
1090 Wien, Währinger Straße 38
T +43-1-4277-521 55
M +43-664-60277-521 55
nuno.maulide@univie.ac.at
http://organicsynthesis.univie.ac.at

Rückfragehinweis
Mag. Veronika Schallhart
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Weitere Informationen:

http://onlinelibrary.wiley.com/doi/10.1002/ange.201310865/abstract - Publikation in "Angewandte Chemie"

Veronika Schallhart | Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten