Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultrastark, ultraschnell und lokal: Wasser induziert elektrische Felder an der DNA-Oberfläche

04.08.2016

Struktur und Dynamik der DNA-Doppelhelix werden entscheidend durch die umgebende Wasserhülle beeinflusst. Neue Ultrakurzzeit-Experimente zeigen, dass die beiden ersten Wasserschichten extrem starke elektrische Felder von bis zu 100 Megavolt/cm erzeugen, die auf der Femtosekunden-Zeitskala fluktuieren und auf eine Reichweite von etwa 1 nm begrenzt sind.

Als Träger der Erbinformation weisen DNA-Moleküle in ihrer natürlichen wässrigen Umgebung eine Doppelhelixstruktur auf, die aus zwei gegenläufigen gewundenen Strängen von Nukleotiden aufgebaut ist (Abb. 1A). Eine alternierende Anordnung negativ geladener Phosphatgruppen und polarer Zuckereinheiten bildet das Rückgrat der Doppelhelix welches direkt mit den umgebenden Wassermolekülen wechselwirkt.


Oberfläche einer DNA-Doppelhelix. Der Verlauf der Helixstränge ist an den Sauerstoffatomen der Phosphatgruppen (rot) zu erkennen.

Bild: MBI

Die insgesamt negative Ladung der Doppelhelix wird durch positiv geladene Gegenionen, z.B. Natriumionen kompensiert, die sich in wässriger Umgebung dicht an der Helixoberfläche befinden. Die Wechselwirkung von elektrischen Dipolmomenten der Wassermoleküle mit den Ladungen der Gegenionen und Phosphatgruppen sowie mit den polaren Einheiten erzeugt elektrische Felder an der DNA-Oberfläche, deren Eigenschaften trotz intensiver Forschung bis heute kontrovers diskutiert werden. Dies liegt wesentlich an der strukturellen Komplexität dieses Vielteilchensystems und seinen thermischen Fluktuationen auf kurzen Zeitskalen.

Wissenschaftlern des Max-Born-Instituts in Berlin ist es jetzt erstmals gelungen, Stärke, Reichweite und ultraschnelle Dynamik der an einer nativen DNA-Oberfläche auftretenden elektrischen Felder quantitativ zu bestimmen. Wie sie in der Zeitschrift Journal of Physical Chemistry Letters berichten, dienen Schwingungen im Rückgrat der Doppelhelixstruktur von natürlicher Salmon DNA als Sonden, um die elektrischen Wechselwirkungen räumlich und zeitlich abzubilden.

Die elektrischen Felder an der DNA-Oberfläche beeinflussen hierbei direkt die Form und Dynamik der Schwingungsresonanzen, welche mit einem speziellen Verfahren, der sog. zweidimensionalen Infrarotspektroskopie, in Echtzeit auf einer Zeitskala im Femtosekundenbereich (1 fs = 10⁻¹⁵s) aufgezeichnet werden (Abb. 1B). Um unterschiedliche Beiträge zu den fluktuierenden elektrischen Feldern an der DNA-Oberfläche zu unterscheiden, wurde der Wassergehalt der DNA-Proben systematisch variiert.

Die Experimente und umfangreiche theoretische Analysen zeigen, dass Wassermoleküle in den ersten beiden Schichten, die die DNA umgeben, ein extrem starkes elektrisches Feld erzeugen, während ionische Gruppen und weiter außen liegende Wassermoleküle nur eine untergeordnete Rolle spielen. Die räumliche Reichweite des Feldes beträgt nur etwa 1 nm, bei einer Stärke von bis zu 100 MV/cm (100 Millionen Volt pro Zentimeter) wie in Abb. 1C dargestellt.

Thermische Bewegungen der Wassermoleküle führen zu Feldfluktuationen von 25 MV/cm auf einer Zeitskala von 300 fs. Die Zeitskala der Fluktuationen zeigt, dass die Bewegung der Wassermoleküle durch die Kopplung an die strukturierte DNA-Oberfläche behindert und im Vergleich zu reinem Wasser verlangsamt wird. Diese neuen, erstmals quantitativen Befunde sind wichtig für das Verständnis der maßgeblichen Rolle von Wasser und seiner Dynamik an biologischen Grenzflächen, etwa geladenen Zellmembranen und Oberflächen von Proteinen.

Abb. 1: (A) Oberfläche einer DNA-Doppelhelix. Der Verlauf der Helixstränge ist an den Sauerstoffatomen der Phosphatgruppen (rot) zu erkennen. In blau sind Gegenionen gezeigt, die kleinen gewinkelten Strukturen sind Wassermoleküle. (B) Zweidimensionales Infrarotspektrum der Schwingungen des DNA-Rückgrats.

Als Funktion der Anrege- und der Detektionsfrequenz sind nichtlineare Schwingungssignale gezeigt. Die Linienform der Resonanzen auf der Diagonalen (gleiche Anrege- und Detektionsfrequenz) wird direkt durch fluktuierende elektrische Felder beeinflusst, die Signale außerhalb der Diagonale werden durch Kopplungen zwischen den Schwingungen verursacht.

(C) Verlauf des zeitlich gemittelten elektrischen Feldes (blau) als Funktion des Abstandes von der DNA-Oberfläche. Wassermoleküle in der ersten Schicht (um 0.4 nm) erzeugen ca. 70% des Gesamtfeldes, die zweite Wasserschicht trägt ca. 20% bei.

Originalpublikation: The Journal of Physical Chemistry Letters, 7, 3131-3136 (2016); Range Magnitude and Ultrafast Dynamics of Electric Fields at the Hydrated DNA Surfaces; T. Siebert, B. Guchhait, Y. Liu, B. P. Fingerhut, T. Elsaesser

Kontakt:
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
Max-Born-Str. 2A
12489 Berlin

Dr. Torsten Siebert
Tel. 030 6392 1414
siebert@mbi-berlin.de

Dr. Benjamin Fingerhut
Tel. 030 6392 1404

Prof. Dr. Thomas Elsässer
Tel. 030 6392 1400
elsaesser@mbi-berlin.de

Weitere Informationen:

http://www.mbi-berlin.de

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher beschreiben neuartigen Antikörper als möglichen Wirkstoff gegen Alzheimer
22.08.2017 | Martin-Luther-Universität Halle-Wittenberg

nachricht Virus mit Eierschale
22.08.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen