Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultramikroskop lüftet Geheimnisse von Fliegenflügeln

17.11.2011
Mikroskopier-Methoden aus der Elektrotechnik an der TU Wien ermöglichen Einblicke in die Entwicklungsgenetik der Fruchtfliege.

Wir kennen sie als ungeliebten Gast in unseren Obstschüsseln: Die Fruchtfliege, Drosophila melanogaster, ist eines der wichtigsten Versuchstiere für die Genetik. Mit Hilfe eines Ultramikroskops der TU Wien wurden die Flugmuskeln der Drosophila nun genau erforscht. Dabei wurde ein genetischer Schalter entdeckt, der über den Muskeltyp entscheidet.


Eine "durchsichtige" Drosophila auf einem Siemens-Stern

Durch ein Protein lassen sich Gene ein- und ausschalten, die für einen faserartigen Muskeltyp verantwortlich sind – und genau diesen Muskeltyp braucht Drosophila zum Fliegen. Die Forschungsergebnisse wurden nun im Fachjournal „Nature“ publiziert.

Dreidimensionale Bilder von Fliegenmuskeln

„Unsere Mikroskopiermethode erlaubt es, in kurzer Zeit viele verschiedene Fliegen zu untersuchen – und zwar dreidimensional, mit sehr guter Auflösung“, berichtet Nina Jährling vom Institut für Festkörperelektronik (Fakultät für Elektrotechnik und Informationstechnik). Die Bilder, die dabei entstehen, sind eine wichtige Arbeitsgrundlage für BiologInnen, die sichtbare Unterschiede im Muskelgewebe dann mit genetischen Veränderungen in Verbindung bringen können. Eine ganze Reihe von Forschungsinstituten war mit den biologischen und biochemischen Aspekten dieses Projekts befasst: Das Max-Planck-Institut für Biochemie (Martinsried, Deutschland, Arbeitsgruppe „Muscle Dynamics“ unter Frank Schnorrer), die Friedrich-Alexander-Universität in Erlangen-Nürnberg und das Institut für Molekulare Pathologie (IMP, Wien). Nina Jährling und Professor Hans-Ulrich Dodt, der Leiter des Lehrstuhls für Bioelektronik an der TU Wien, arbeiten außerdem eng mit der Medizinischen Universität Wien zusammen. An der TU Wien wurden die Fliegen Schicht für Schicht mit Laserlicht durchleuchtet. Das Fliegen-Gewebe beginnt dabei zu fluoreszieren, und das dadurch ausgesandte Licht kann aufgezeichnet und am Computer zu einem 3D-Modell zusammengesetzt werden.

Fruchtfliegen und Menschenherzen

Wenn ein Gen, das für einen bestimmten Muskeltyp verantwortlich ist, in zwei verschiedenen Fliegen in der selben Form vorkommt, dann bedeutet das noch lange nicht, dass beide Fliegen denselben Muskeltyp entwickeln. Ein spezielles Protein – der Transkriptionsfaktor Salm – entscheidet darüber, ob die entsprechenden Gene aktiviert werden oder nicht. Zerstört man diesen Transkriptionsfaktor, dann bilden die Fliegen den notwendigen Muskeltyp nicht aus und können daher nicht fliegen. Besonders interessant ist das deshalb, weil auch das menschliche Herz ähnliche Muskeltypen aufweist. Es ist daher denkbar, dass gewisse Herz-Abnormalitäten bei Menschen oder Tieren einen ähnlichen biochemischen Hintergrund haben.

Rückfragehinweise:
Prof. Hans Ulrich Dodt
Institut für Festkörperelektronik
Technische Universität Wien
Floragasse 7, 1040 Wien
hans.dodt@tuwien.ac.at
Dipl. Biol. Nina Jährling
Institut für Festkörperelektronik
Technische Universität Wien
Floragasse 7, 1040 Wien
T: +43-(1)-58801-36263
nina.jaehrling@tuwien.ac.at

Werner Sommer | idw
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit grüner Chemie gegen Malaria
21.02.2018 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Vom künstlichen Hüftgelenk bis zum Fahrradsattel
21.02.2018 | Frankfurt University of Applied Sciences

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics