Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultradünne CIGSE-Solarzellen: Nanostrukturen steigern den Wirkungsgrad

24.03.2017

Ultradünne CIGSe-Solarzellen sparen Material und Energie bei der Herstellung. Allerdings sinkt auch ihr Wirkungsgrad. Mit Nanostrukturen auf der Rückseite lässt sich dies verhindern, zeigt eine Forschungsgruppe vom HZB zusammen mit einem Team aus den Niederlanden. Sie erzielten bei den ultradünnen CIGSe-Zellen einen neuen Rekord bei der Kurzschlussstromdichte.

Eine interessante Klasse von Solarzellen besteht aus den Elementen Kupfer, Indium, Gallium und Selen, die in einer Chalkopyrit-Kristallstruktur angeordnet sind. Dünnschicht-CIGSe-Solarzellen können im Labor Wirkungsgrade von bis zu 22,6 Prozent erreichen und besitzen im Vergleich zu den marktführenden Solarmodulen aus Silizium einige Vorteile. Unter anderem lassen sie sich mit weniger Energie herstellen und haben geringere Einbußen bei Verschattung.


Nanostruktures fangen das Licht ein, zeigt diese Illustration auf dem Titel von Advanced Optical Materials.

Credit: Adv. Opt. Mat. 5/2017

Indium eingespart

Die Massenproduktion von CIGSe-Zellen würde jedoch große Mengen Indium erfordern. Indium zählt aber zu den seltenen Elementen, deren Vorkommen weltweit begrenzt sind. Ein interessanter Ansatz ist daher, CIGSe-Dünnschichten noch deutlich dünner zu machen.

Während eine typische CIGSe-Dünnschicht-Solarzelle 2-3 Mikrometer dick ist, misst eine „ultradünne“ Schicht weniger als 0,5 Mikrometer und kommt für die gleiche Modulfläche mit einem Bruchteil an Indium aus. Allerdings absorbieren ultradünne Solarzellen auch wesentlich weniger Licht, was den Wirkungsgrad stark verringert.

Nanostrukturierte Rückkontakte fangen das Licht ein

Nun hat die Forschungsgruppe Nanooptix am HZB von Prof. Martina Schmid gezeigt, wie sich die Absorptionsverluste in ultradünnen CIGSe-Schichten größtenteils verhindern lassen. Gemeinsam mit dem Team von Prof. Albert Polman am Institute for Atomic and Molecular Physics (AMOLF), Niederlande, haben sie nanostrukturierte Rückkontakte entwickelt, die das Licht einfangen: Diese Nanostruktur besteht aus einem regelmäßigen Muster aus Siliziumoxidpartikeln auf einem ITO-Substrat.

Beste ultradünne Zelle kommt fast an Leistung einer "normalen" CIGSe-Dünnschicht heran

Kombiniert mit einer reflektierenden Schicht erreichte die beste ultradünne CIGSe-Zelle eine Kurzschlussstromdichte von 34,0 mA/cm2. Dies ist der bislang höchste Wert, der jemals an einer ultradünnen CIGSe-Zelle gemessen wurde. Mehr noch: Dies entspricht bereits 93 Prozent der Kurzschlussstromdichte der Rekord-CIGSe-Zelle mit üblicher Dicke.

Nanostrukturen verbessern auch elektrische Eigenschaften

Außerdem verbessern die Nanostrukturen auch die elektrischen Eigenschaften der Zelle und steigern den Wirkungsgrad im Vergleich zu Zellen ohne nanostrukturierte Rückkontakte auf das Anderthalbfache. „Damit haben wir gezeigt, dass Nanostrukturen bei ultradünnen CIGSe-Solarzellen sowohl die optische Absorption verstärken als auch einige elektrische Aspekte günstig beeinflussen“, sagt Guanchao Yin, Erstautor der Publikation. „Diese Ergebnisse belegen, dass optoelektronische Nanostrukturen eine interessante Möglichkeit sind, um hohe Wirkungsgrade mit deutlich weniger Materialeinsatz zu erreichen“, sagt Prof. Martina Schmid, die nun als Professorin für „Experimentelle Physik“ an die Universität Duisburg wechselt. „Mit der Nachwuchsgruppe habe ich die Chance erhalten, selbstständig zu forschen und meine Karriere zu starten. Dafür danke ich dem HZB und der Helmholtz-Gemeinschaft.“

Die Arbeit ist in Advanced Optical Materials (5, 2017) veröffentlicht und auf der Titelseite erschienen.

Optoelectronic Enhancement of Ultrathin CuIn1–xGaxSe2 Solar Cells by Nanophotonic Contacts; Guanchao Yin, Mark W. Knight, Marie-Claire van Lare, Maria Magdalena Solà Garcia, Albert Polman, Martina Schmid

DOI: 10.1002/adom.201600637

Kontakt:

Prof. Dr. Martina Schmid
E-Mail: martina.schmid@helmholtz-berlin.de

Dr. rer. nat. Guanchao Yin
E-Mail: guanchao.yin@helmholtz-berlin.de

HZB-Pressestelle
Dr. Antonia Rötger
E-Mail: antonia.roetger@helmholtz-berlin.de

Weitere Informationen:

http://www.helmholtz-berlin.de/pubbin/news_seite?nid=14631&sprache=de&ty...
http://onlinelibrary.wiley.com/doi/10.1002/adom.201770026/full

Dr. Ina Helms | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics