Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Überraschend ähnlich: Visuelle Suche bei Menschen und Schützenfischen

31.05.2013
Tierphysiologen der Universität Bayreuth haben überraschende Ähnlichkeiten von Menschen und Schützenfischen entdeckt. Deren visuelle Suchstrategien sind einander ähnlich und gleichermaßen erfolgreich, trotz großer Unterschiede im Aufbau der zugrunde liegenden Nervensysteme.

Eine spezielle Nudelsorte im Supermarktregal zu finden oder den eigenen Drahtesel auf einem vollen Fahrradparkplatz zu entdecken – das sind Beispiele für eine erfolgreiche visuelle Suche, eine der hervorragendsten Leistungen des menschlichen Gehirns. Dabei sorgt ein komplexes Netzwerk aus Nervenzellen in der Hirnrinde dafür, dass eine im Ganzen unübersichtliche Szenerie Ausschnitt für Ausschnitt mit hoher Aufmerksamkeit abgetastet wird.


Schützenfische im Versuchslabor der Bayreuther Tierphysiologie. In dem kreisrunden Ausschnitt oberhalb des Beckens werden den Fischen fliegenförmige Objekte und verschiedene andere Objekte gezeigt. Foto: Lehrstuhl für Tierphysiologie, Universität Bayreuth; zur Veröffentlichung frei.


Sobald die Schützenfische ein fliegenförmiges Objekt auf der Glasplatte über dem Wasserbecken identifiziert haben, schießen sie einen Wasserstrahl auf diese "Beute" ab. Foto: Lehrstuhl für Tierphysiologie, Universität Bayreuth; zur Veröffentlichung frei.

Überraschenderweise gibt es Fische, die bei der visuellen Suche ganz ähnlich und ebenso erfolgreich verfahren – obwohl ihr Nervensystem erheblich einfacher und ihr Gehirn unvergleichlich kleiner ist. Darüber berichten Prof. Dr. Stefan Schuster und Ingo Rischawy vom Lehrstuhl für Tierphysiologie der Universität Bayreuth im "Journal of Experimental Biology".

"Lernen im Labor": Was Schützenfische finden sollen

Schützenfische leben vor allem in tropischen Brackwassergebieten. Mit einem gezielten Wasserstrahl schießen sie Insekten, die sich auf Pflanzen dicht am Ufer niedergelassen haben, seitlich von unten an, so dass ihre Beute ins Wasser hinabfällt. In der Natur sind es verschiedenartige Insekten, von denen sich Schützenfische auf diese Weise ernähren. Als daher den Schützenfischen im Bayreuther Versuchslabor verschiedene Objekte präsentiert wurden, fanden sie diese zunächst allesamt als Beute interessant. Dann aber wurden ihnen beigebracht, nur einen bestimmten Typ von Objekten als lohnende Beute aufzufassen. Immer dann, aber auch nur dann, wenn die Fische einen Wasserstrahl auf ein fliegenförmiges Objekt abgefeuert hatten, wurden sie unmittelbar anschließend mit einer ins Wasser geworfenen toten Fliege belohnt – so als ob sie diese tatsächlich erbeutet hätten. Auf diese Weise gewöhnten sich die Fische daran, andersförmige Objekte nicht als Ziele, sondern als uninteressante Bestandteile des Umfelds aufzufassen.

Präzise Zielerkennung in unterschiedlich komplexen Szenarien

Anschließend haben die Bayreuther Forscher untersucht, wie gut die Fische in der Lage waren, die Ziele ihrer Nahrungssuche innerhalb eines mehr oder weniger komplex gestalteten Umfelds zu identifizieren. Von entscheidender Bedeutung waren dabei zwei Aspekte der Versuchsanordnung: Die Szenarien, mit denen die Fische konfrontiert wurden, enthielten keine Bewegungsabläufe, mit deren Hilfe sie ihre Beute – also die fliegenförmigen Objekte – von ihrem jeweiligen Umfeld hätten unterscheiden können. Zudem bekamen die Fische die fliegenförmigen Objekte immer nur zeitgleich mit deren Umfeld zu sehen. Es war ihnen daher nicht möglich, Erinnerungen an das Umfeld zu speichern und neu hinzukommende Objekte als Ziele der Nahrungssuche zu identifizieren.

"Wir waren überrascht, wie erfolgreich die visuelle Suche der Schützenfische unter diesen ungewöhnlichen Bedingungen verlief. Trotz eines Umfelds, das zahlreiche Objekte mit jeweils unterschiedlichen Formen enthielt, waren die Fische imstande, ihre Beute zu erkennen und per Wasserstrahl darauf zu reagieren", berichtet Prof. Schuster. Sein Mitarbeiter Ingo Rischawy hat die Reaktionszeiten, also die Zeit zwischen der Präsentation eines Szenarios und dem Abfeuern eines Wasserstrahls auf die Beute, gemessen. Dabei stellte sich heraus: Die durchschnittliche Reaktionszeit der Fische ist umso länger, je mehr Objekte in einem Szenario enthalten sind – so als ob jedes Objekt für eine kurze Zeit begutachtet wird. Diese Einzelbegutachtungen dauern umso länger, je schwieriger die Unterscheidung zwischen der Beute und den Objekten in ihrem Umfeld ist.

Überraschend ähnliche Suchstrategien bei Menschen und Schützenfischen

Die Wissenschaftler waren erstaunt, als ähnlich aufgebaute Versuchsreihen mit Menschen zu analogen Ergebnissen führten. Studierende blickten auf eine Wand, auf die ein großes kreisrundes Feld projiziert wurde. Darin waren jedes Mal ein fliegenförmiges Objekt sowie weitere, mehr oder weniger verschiedenartige Gegenstände zu sehen. Die gleichen Szenarien also, welche die Fische auf der Glasplatte über dem Wasserbecken zu sehen bekamen, wurden mittels des Projektors den Studierenden vorgeführt. Diese hatten die Aufgabe, die Fliegen als Ziele zu identifizieren und mit Tennisbällen nach ihnen zu werfen. Gleichzeitig aber mussten sie Kopfrechenaufgaben lösen. Mit dieser Erschwernis wollten die Wissenschaftler dem Umstand Rechnung tragen, dass die Aufmerksamkeit eines Fisches, der sich per Wasserstrahl eine Beute sichern will, in der Regel ebenfalls abgelenkt ist: Er muss sich gegenüber wachsamen Artgenossen durchsetzen, die ihm die Beute wegschnappen wollen.

Mit zunehmender Vielgestaltigkeit der Gegenstände, die sich im Umfeld des Ziels befanden, stieg auch die Scan-Zeit pro Objekt an, genau wie bei den Fischen. "Obwohl die neuronale Ausstattung der Schützenfische einfacher ist und die Fische gar keine Großhirnrinde besitzen, gibt es offenbar erhebliche Gemeinsamkeiten", fasst Prof. Schuster die Forschungsergebnisse zusammen. "Es sieht so aus, als ob beide Organismen mit ähnlichen Algorithmen arbeiten, wenn sie ein vielgestaltiges und zugleich unbewegtes Szenario daraufhin 'abscannen', ob und – falls ja – an welchem Ort sich ein gesuchtes Ziel befindet. Unsere Studie zeigt daher deutlich, dass anspruchsvolle mentale Leistungen aus sehr unterschiedlichen physiologischen Grundlagen hervorgehen können und keineswegs immer von den komplexen Strukturen und Prozessen innerhalb der menschlichen Hirnrinde abhängig sind."

Veröffentlichung:

Ingo Rischawy and Stefan Schuster,
Visual search in hunting archerfish shares all hallmarks of human performance,
in: Journal of Experimental Biology, first posted online April 25, 2013
DOI: 10.1242/jeb.087734

Ansprechpartner:

Prof. Dr. Stefan Schuster
Lehrstuhl für Tierphysiologie
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49-(0)921 / 55-2470 und -2471
E-Mail: stefan.schuster@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kontinentalrand mit Leckage
27.03.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Neuen molekularen Botenstoff bei Lebererkrankungen entdeckt
27.03.2017 | Universitätsmedizin Mannheim

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE