Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Übermäßiges Zellwachstum erzeugt Stress

10.07.2014

Ein Protein, das die Entstehung von Krebs antreibt. Ein zweites Protein, das die schädliche Aktivität des ersten unterdrückt: Das könnte neue Wege für die Therapie eröffnen, wie eine Würzburger Forschungsgruppe in der Zeitschrift „Nature“ aufzeigt.

Krebserkrankungen entstehen durch Veränderungen im Erbgut, die letzten Endes ein unkontrolliertes Wachstum von Zellen auslösen. Bei einem Großteil aller Tumore des Menschen ist das MYC-Gen so verändert, dass es übermäßig aktiv ist. Als Folge davon produzieren die Tumorzellen viel zu viele Myc-Proteine.


Zuviel Myc erzeugt Stress in Tumorzellen. Die Bilder zeigen Zellen des Pankreas. Links sind Kontrollen gezeigt, rechts Myc-exprimierende Zellen. Eine rote Färbung zeigt zellulären Stress an.

Bild: Daniel Murphy

„Wir wissen aus zahlreichen Versuchen, dass erhöhte Mengen an Myc das Zellwachstum steigern, den Stoffwechsel verändern und ganz wesentlich zur Tumorentstehung beitragen“, sagt Professor Martin Eilers, Krebsforscher am Biozentrum der Universität Würzburg.

Was genau bewirken die Myc-Proteine? Sie binden sich im Zellkern ans Erbgut und sorgen dafür, dass Gene aktiviert werden. Weil sie in Tumorzellen in einer „Überdosis“ vorliegen, regulieren sie dort aber ganz andere Gene als in normalen Zellen – mit fatalen Folgen. „Dieses Muster der Genaktivierung ist für einzelne Tumore sehr spezifisch. Es erlaubt sogar Aussagen darüber, wie aggressiv ein Tumor ist, und es ermöglicht Prognosen über den weiteren Verlauf der Krankheit“, sagt Eilers.

Proteine im Doppelpack hemmen die Genaktivierung

Insgesamt kennt man einige hundert Gene, die in Tumorzellen von Myc-Proteinen aktiviert werden. Tatsächlich aber binden die Myc-Proteine an Zehntausende von Genen. Warum setzen sie sich an so vielen Genen fest, aktivieren aber nur einige davon? Was genau macht den Unterschied zwischen Bindung und Aktivierung aus? Diese Frage konnte die Wissenschaft bisher nicht beantworten.

Mehr Klarheit in dieser Frage bringen jetzt neue Forschungsergebnisse aus der Universität Würzburg, die im Magazin „Nature“ veröffentlicht worden sind. Susanne Walz, Francesca Lorenzin, Elmar Wolf und Martin Eilers vom Biozentrum haben herausgefunden, dass die Myc-Proteine in Tumorzellen nicht immer alleine an die Gene binden. Meist stehen sie dabei in einer engen Verbindung mit einem Partnerprotein (Miz1). Wo Myc alleine ein Gen aktiviert, passiert bei beiden Proteinen im Doppelpack genau das Gegenteil: Die Genaktivierung wird unterdrückt.

Abwehrreaktion gegen Überdosis Myc-Proteine

Die Würzburger Forschungsgruppe interpretiert das als Abwehrreaktion: „Offensichtlich erkennen die Zellen, dass sie zu viel Myc herstellen, und versuchen, dem Stress, der aus diesem übermäßigen Wachstumssignal entsteht, entgegenzusteuern.“ Damit entstehe in Tumorzellen ein für jedes Gen leicht unterschiedliches Gleichgewicht aus Aktivierung und Unterdrückung. Daraus wiederum ergeben sich die charakteristischen Genaktivierungsmuster, die Tumorzellen von normalen Zellen unterscheiden.

Neue Ansatzpunkte für Therapie weiter verfolgen

Diese neue Erkenntnis ist laut Eilers nicht nur für die Grundlagenforschung interessant: „Wir können nun Gene identifizieren, die spezifisch nur in Tumoren, nicht aber in normalen Zellen, abgelesen werden“, erklärt der Professor. Das liefere neue Angriffspunkte für die Therapie. Diese neuen Ansätze will Eilers‘ Team jetzt weiter verfolgen, und zwar in enger Kooperation mit dem Krebszentrum der Universität und des Universitätsklinikums, dem „Comprehensive Cancer Center Mainfranken“.

Activation and repression by oncogenic Myc shape tumour-specific gene expression profiles, Nature, 9. Juli 2014, DOI 10.1038/nature13473

Kontakt

Prof. Dr. Martin Eilers, Lehrstuhl für Biochemie und Molekularbiologie, Biozentrum der Universität Würzburg, T (0931) 31-84111, Martin.Eilers@biozentrum.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie