Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

UDE-Chemiker entwickeln Nano-Paste, die Knochendefekte heilt

20.02.2013
Nach Unfällen oder einer Tumor-OP sind oft die Knochen so geschädigt, dass Ärzte dann gesundes Knochengewebe transplantieren oder künstliches Material verwenden müssen. Nicht immer mit dem gewünschten Erfolg.

Prof. Dr. Matthias Epple von der Universität Duisburg-Essen (UDE) und sein Team haben nun eine Paste aus Nanopartikeln entwickelt, die in die Defekte gespritzt werden kann und sie dann besser heilen lässt.


Grafik zur Funktionsweise der Paste
Bildnachweis: UDE

Der Trick: Die Forscher kombinieren das synthetisch hergestellte Knochenmineral Calciumphosphat mit DNA.

Die Forschung an der Schnittstelle zu Biologie und Medizin hat es Matthias Epple angetan. „Wir beschäftigen uns seit Jahren damit, was mineralisches Gewebe wie Zähne, Knochen und Muschelschalen bewirkt, und versuchen, unsere Erkenntnisse in neue Biomaterialien umzusetzen“, sagt der Professor für Anorganische Chemie. Hierfür arbeitet er eng mit Medizinern zusammen. So auch bei seinem aktuellen Projekt, das er mit drei seiner Doktoranden durchgeführt hat.

„Die Behandlung von Knochendefekten ist für Chirurgen eine echte Aufgabe. Wenn es möglich ist, nehmen sie überschüssigen eigenen Knochen des Patienten zur Auffüllung – etwa aus dem Beckenkamm. Weil es davon aber nur eine begrenzte Menge gibt, greifen sie auch auf synthetisches, also künstliches Material zurück“, sagt Epple. „Dabei wird sehr gerne Calciumphosphat verwendet, denn es ist das anorganische Mineral, das im Knochen als Nanokristall zu finden ist. Dem Körper ist es also wohlbekannt, was es zu einem geeigneten Träger macht. Außerdem führen die Calcium- und Phosphat-Ionen zu einer verbesserten Knochenbildung.“

So ein Ersatz ist dennoch nicht ohne: Er heilt wesentlich schlechter ein, die Infektionsgefahr ist größer, und die mechanische Stabilität könnte besser sein. Epples Team hat nun künstliche Calciumphosphat-Nanokristalle mit Nukleinsäuren, also DNA, beschichtet und daraus eine Paste erzeugt. Wenn diese in einen Knochendefekt gespritzt wird, sollte Folgendes passieren: „Zellen nehmen die Nanopartikel auf. Das Calciumphosphat löst sich auf, und die freigesetzte DNA stößt die Bildung von zwei Proteinen an, die für eine Heilung wichtig sind“, erklärt Epple. „Da ist zum einen BMP-7, das die Knochenbildung anregt, zum andern VEGF-A, das dafür sorgt, dass Blutgefäße entstehen. So kann der neugebildete Knochen mit Nährstoffen versorgt werden.“

Die UDE-Forscher erwarten, dass die Wirkung der Paste lange anhält, da die Nanopartikel nach und nach freigesetzt werden und somit permanent die umgebenden Zellen stimulieren. Dass es funktioniert, haben sie an drei Zelltypen nachgewiesen. Jetzt müssen noch weitere Tests gemacht werden. „Wir hoffen“, so Epple, „dass unsere Entwicklung in einigen Jahren in der Unfallchirurgie und auch bei der Behandlung von Osteoporose helfen kann.“

Die Forschungsergebnisse wurden jüngst im internationalen Journal RSC Advances veröffentlicht:

DOI: http://dx.doi.org/10.1039/C3RA23450A

Weitere Informationen:
Prof. Dr. Matthias Epple,
Tel. 0201/183-2413, matthias.epple@uni-due.de

Ulrike Bohnsack | idw
Weitere Informationen:
http://www.uni-due.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik