Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tumorzellen im Blut automatisch zählen

04.05.2015

Grundlagenforscher aus Biologie und Medizin nutzen seit 40 Jahren die Durchfluss- zytometrie, eine Art »Zellzähler« für die Krebsanalyse. Doch die Geräte sind groß, teuer und lassen sich nur von Experten bedienen. Das Zytometer PoCyton von Fraunhofer-Forschern dagegen ist preisgünstig, klein wie ein Schuhkarton und automatisiert.

Ob Chemotherapie oder Bestrahlung – Krebstherapien sind belastend für den Körper. Umso wichtiger wäre es zu wissen, ob die Behandlung wie gewünscht anschlägt. Bislang können Ärzte dies nur über eine Computertomographie feststellen. Schon in etwa zwei Jahren könnte das schneller und einfacher gehen: Dann reicht es, dem Patienten Blut abzunehmen und dieses in das Durchflusszytometer PoCyton zu geben. Ohne weiteres Zutun zeigt das Gerät dem Arzt wenig später automatisch an, wie viele zirkulierende Tumorzellen im Blut schwimmen. Die Zellen werden von den Krebsgeschwüren an das Blut abgegeben und lassen einen direkten Rückschluss auf die Wirkung der Therapie zu: Sinkt ihre Anzahl im Laufe der Behandlung, ist das ein Zeichen, dass sie wirkt.


Im rechten Bereich des Bildes befindet sich der Messkanal, das Herzstück des Zytometers.

© Fraunhofer ICT-IMM

Schneller, kleiner und leicht zu bedienen

Es gibt bereits Durchflusszytometer, mit denen man die Menge der im Blut zirkulierenden Tumorzellen messen kann. Der Haken: Diese Geräte kosten oftmals bis zu 300.000 Euro und benötigen etwa so viel Platz wie ein bis zwei Waschmaschinen. Zudem nimmt die Untersuchung mehrere Stunden in Anspruch – das Verfahren ist für den Klinikalltag zu teuer und zu zeitintensiv. Ein weiteres Manko: Die Zytometer lassen sich nur von Experten bedienen und müssen täglich kalibriert werden. Anders das PoCyton-Gerät, das Forscher am Fraunhofer-Institut für Chemische Technologie, Institutsteil IMM in Mainz entwickeln. »Mit unserem Durchflusszytometer können wir solche Untersuchungen etwa zwanzigmal schneller durchführen«, sagt Dr. Michael Baßler, Wissenschaftler am ICT-IMM. »Auch die Anschaffungskosten liegen mit wenigen tausend Euro in einer ganz anderen Größenordnung. Damit werden die Geräte für den Klinikbetrieb rentabel.« Weitere Vorteile: Die Forscher haben ihr Durchflusszytometer miniaturisiert, es ist nicht größer als ein kleiner Schuhkarton. Die Messung erfolgt automatisch, eine Kalibrierung ist nicht nötig.

Das Prinzip der Durchflusszytometrie: In das Blut wird ein Fluoreszenzfarbstoff gegeben. Diese Farbstoffmoleküle setzen sich gezielt auf die Tumorzellen, alle anderen Zellen bleiben unmarkiert. Während der Arzt den Farbstoff bisher per Hand in die Blutprobe geben musste, läuft dies bei PoCyton automatisch: Das Blut fließt durch eine Engstelle – alle darin umher schwimmenden Zellen werden somit einzeln an einem Laserspot vorbeigeführt.

Dieser lässt die Zellen, die den Farbstoff huckepack tragen – die Tumorzellen – leuchten, das Gerät kann sie erkennen und zählen. Der Clou von PoCyton liegt in diesem »Nadelöhr«. »Wir haben diese Engstelle so ausgelegt, dass der Durchsatz gegenüber der herkömmlichen Zytometrie um den Faktor 20 steigt«, sagt Baßler.

Die Geometrie des Nadelöhrs haben die Forscher dabei so gewählt, dass nach wie vor keine Zelle über eine andere passt. So stellen die Wissenschaftler sicher, dass das System jedes vorbeischwimmende Objekt registriert – und sich keine Zelle unter einer anderen verstecken kann. Denn das wäre fatal: Schließlich schwimmen etwa eine Milliarde Objekte in zehn Millilitern Blut.

Selbst bei einem schwer erkrankten Patienten sind nur etwa fünf davon zirkulierende Tumorzellen. Die einzelnen Schritte wie eine ausreichende Sensitivität, die automatische Probenvorbereitung und die Auswertung haben die Forscher bereits im Griff. Nun setzten sie diese Einzelprozesse zu einem Gesamtdemonstrator zusammen. Im Sommer 2015 soll er fertig sein.

Legionellengefahr? Wasserqualität vor Ort überprüfen

Das Potenzial von PoCyton geht über die Messung der Tumorzellen hinaus. Ein Beispiel: Gemeinsam mit den Kollegen der Schweizer Firma rqmicro wollen sie mit dem Gerät im Trinkwasser Legionellen aufspüren. Diese stäbchenförmigen Bakterien können die Legionärskrankheit verursachen – eine Lungenentzündung, die tödlich enden kann.

Möchte man überprüfen, wie es um das Trinkwasser in den eigenen vier Wänden bestellt ist, heißt es bislang: Eine Wasserprobe ins Labor schicken und etwa zehn Tage auf das Ergebnis warten. Denn so lange brauchen die Bakterien, die im Wasser enthalten sind, um sich in einer Petrischale ausreichend zu vermehren und gemessen zu werden.

»Mit unserem Durchflusszytometer erhalten wir die Analyse in einer Stunde«, so Baßler. Der Handwerker kann das Gerät mitnehmen und das Wasser direkt vor Ort untersuchen. Im Alltag heißt das für ihn: Wasser in das Gerät geben, den Prozess starten, fertig. In etwa zwei Jahren, so der Plan, dürfte die Firma rqmicro das Gerät auf den Markt bringen.

Dr. rer. nat. Stefan Kiesewalter | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2015/mai/tumorzellen-im-blut-automatisch-zaehlen.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt
22.05.2018 | Technische Universität München

nachricht Designerzellen: Künstliches Enzym kann Genschalter betätigen
22.05.2018 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Kosmische Ravioli und Spätzle

Die inneren Monde des Saturns sehen aus wie riesige Ravioli und Spätzle. Das enthüllten Bilder der Raumsonde Cassini. Nun konnten Forscher der Universität Bern erstmals zeigen, wie diese Monde entstanden sind. Die eigenartigen Formen sind eine natürliche Folge von Zusammenstössen zwischen kleinen Monden ähnlicher Grösse, wie Computersimulationen demonstrieren.

Als Martin Rubin, Astrophysiker an der Universität Bern, die Bilder der Saturnmonde Pan und Atlas im Internet sah, war er verblüfft. Die Nahaufnahmen der...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Raumschrott im Fokus

Das Astronomische Institut der Universität Bern (AIUB) hat sein Observatorium in Zimmerwald um zwei zusätzliche Kuppelbauten erweitert sowie eine Kuppel erneuert. Damit stehen nun sechs vollautomatisierte Teleskope zur Himmelsüberwachung zur Verfügung – insbesondere zur Detektion und Katalogisierung von Raumschrott. Unter dem Namen «Swiss Optical Ground Station and Geodynamics Observatory» erhält die Forschungsstation damit eine noch grössere internationale Bedeutung.

Am Nachmittag des 10. Februars 2009 stiess über Sibirien in einer Höhe von rund 800 Kilometern der aktive Telefoniesatellit Iridium 33 mit dem ausgedienten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

22.05.2018 | Biowissenschaften Chemie

Mikroskopie der Zukunft

22.05.2018 | Medizintechnik

Designerzellen: Künstliches Enzym kann Genschalter betätigen

22.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics