Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Türchen auf für CO2

24.08.2009
Flexibles dreidimensionales Gitter bindet Kohlendioxid selektiv und effizient

Fabrikschlote, die nichts anderes als Kohlendioxid und Wasserdampf herausbliesen, galten lange als vorbildlich.

Mittlerweile ist CO2 als Treibhausgas in Verruf geraten und das Risiko eines Klimawandels eines der drängendsten Umweltprobleme unserer Zeit. Wie aber kann man die zunehmende Freisetzung von CO2 bremsen? Effektive Methoden zur Entfernung des Treibhausgases aus industrieller Abluft werden gesucht.

Koreanische Forscher haben jetzt ein poröses Material entwickelt, das CO2 effizient und hochselektiv binden und speichern kann. Wie Myunghyun Paik Suh und Hye-Sun Choi in der Zeitschrift Angewandte Chemie berichten, enthält das gitterartige Netzwerk flexible "Säulen", die die Poren des dreidimensionalen Gitters für CO2 regelrecht öffnen können.

Viele poröse Materialien sind in der Lage, CO2 und andere Gasmoleküle aufzunehmen. CO2 bei Raumtemperatur und Atmosphärendruck selektiv aus industriellen Abgasen herauszuholen, die gleichzeitig andere Gase wie Stickstoff, Methan oder Wasser enthalten, ist jedoch nach wie vor eine große technische Herausforderung.

Das Forscherteam hat jetzt porösese dreidimensionale Netzwerke aus so genannten Koordinationspolymeren entwickelt. Als Bausteine dienen verschiedene Nickelkomplexe und organische Moleküle. Diese lagern sich zu zweidimensionalen gitterartigen Flächen zusammen, die gestapelt vorliegen und über "Säulen" verbunden sind. Der besondere Trick dabei: Die Säulen sind nicht starr, sondern sehr flexibel. Dadurch sind die entstehenden Hohlräume der Struktur von variabler Größe und können sich eingelagerten Gastmolekülen anpassen.

Das symmetrische Molekül Kohlendioxid besitzt ein permanentes elektrisches Quadrupolmoment, das man als zwei Rücken an Rücken liegende elektrische Dipole mit entgegengesetzter Richtung beschreiben könnte. Dieser Quadrupol tritt mit dem dreidimensionalen Gitter in Wechselwirkung und bringt die Säulen dazu, die "Tore" zu öffnen, sodass das Gas in die Hohlräume eintreten kann. Im Gegensatz dazu zeigen Stickstoff, Wasserstoff und Methan ein wesentlich kleineres Quadrupolmoment. Für sie bleiben die Poren verschlossen. Dass der in Luft reichlich vorhandene Stickstoff draußen bleiben muss, ist für einen potenziellen CO2-Fänger essenziell. Zudem sind die neuen nickelhaltigen Materialien auch noch bei Temperaturen von 300 °C stabil und gegenüber Luft und Wasser beständig - auch dies sind wichtige Voraussetzungen für einen eventuellen industriellen Einsatz.

Wird der Umgebungsdruck reduziert, wird das gespeicherte CO2 wieder freigesetzt. Ein solches Material wäre daher für Prozesse geeignet, in denen Kohlendioxid durch einen Druckwechsel zyklisch gespeichert und wieder freigesetzt werden soll.

Angewandte Chemie: Presseinfo 34/2009

Autor: Myunghyun Paik Suh, Seoul National University (Republic of Korea), http://chem.snu.ac.kr/eng/Faculty/faculty_detail.asp?seqno=27&link=faculty

Angewandte Chemie 2009, 121, No. 37, 6997-7001, doi: 10.1002/ange.200902836

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | GDCh
Weitere Informationen:
http://presse.angewandte.de
http://chem.snu.ac.kr/eng/Faculty/faculty_detail.asp?seqno=27&link=faculty

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie