Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Tücken der Proteinfaltung

20.04.2012
Studie zeigt neue Details der Bildung von Amyloid-Plaques

Alzheimer, Parkinson, Creutzfeld-Jakob - bei allen diesen Krankheiten lassen sich auffällig viele wasserunlösliche Proteinablagerungen, sogenannte Amyloid-Plaques, an Stelle gesunder Zellen beobachten. Einem Team von Wissenschaftlern um Dr. Philipp Neudecker vom Forschungszentrum Jülich und der Heinrich-Heine-Universität Düsseldorf ist es nun gelungen, das Entstehen von Amyloid-Plaques genauer zu untersuchen.

Dieses Wissen eröffnet den Weg zu neuen Möglichkeiten der Diagnose und Therapie. Die renommierte Fachzeitschrift "Science" stellt die Ergebnisse in ihrer aktuellen Ausgabe vor.

Lebende Zellen synthetisieren pausenlos eine Vielzahl verschiedener Proteine, die dann ihrerseits fast alle zellulären Vorgänge durchführen, etwa als molekulare Maschinen, als Transporter oder als Botenstoffe. Um ihre Funktion tatsächlich ausführen zu können, müssen die meisten Proteine sich aber nach ihrer Synthese als lange Polypeptid-Ketten erst noch in ihre genau definierte dreidimensionale Struktur falten, in den sogenannten nativen Zustand des Proteins. Fehlgefaltete Proteine hingegen sind nicht nur inaktiv, sondern neigen häufig auch dazu, zellschädigende Verbindungen zu bilden. Gesunde Zellen bauen diese rasch wieder ab. Versagt dieser Schutzmechanismus jedoch oder wird er überfordert, so bilden sich lange Fäden aus vielen Molekülen des falsch gefalteten Proteins ("Amyloid-Fibrillen") und reichern sich an. In der Folge sterben die Zellen ab und die verklumpten Fibrillen lagern sich als Amyloid-Plaques im Gewebe ab.

Damit die Proteine innerhalb weniger Sekunden ihren nativen Zustand erreichen, darf ihr Faltungsprozess nicht einfach dem Zufall überlassen bleiben, sondern muss notwendigerweise mehr oder weniger exakt definiert und effizient sein. Aber: In diesem Prozess werden kurzfristig bestimmte fehlgefaltete Strukturen gebildet, Wissenschaftler sprechen von "Faltungsintermediaten". Sie vermuten, dass die Proteinfaltung eine Gratwanderung zwischen Effizienz einerseits und dem Risiko zellschädigender Verklumpungen andererseits darstellt.

Faltungsintermediate stehen schon seit einigen Jahren unter dringendem "Tatverdacht" als Auslöser für Amyloid-Erkrankungen und dürften der für Verständnis, Diagnose und Therapie entscheidende Ansatzpunkt sein. Allerdings waren sie wegen ihrer Instabilität und Kurzlebigkeit bisher schwer nachzuweisen und zu untersuchen.

Erstmals gelang es nun dem Team um Philipp Neudecker vom Institute of Complex Systems - Strukturbiochemie des Forschungszentrums Jülich und dem Institut für Physikalische Biologie der Universität Düsseldorf, mit Hilfe der Kernspinresonanz-Spektroskopie ("Nuclear Magnetic Resonance", NMR) in atomarer Auflösung die räumliche Struktur eines Intermediats zu bestimmen, das nicht nur die korrekte Faltung des untersuchten Proteins vermittelt, sondern dessen Anreicherung auch spontan zur Bildung der gefürchteten Amyloid-Fibrillen führt. Neudecker hatte zuvor in der Arbeitsgruppe von Prof. Lewis Kay an der University of Toronto zusammen mit Kollegen der University of Cambridge an der Weiterentwicklung der NMR gearbeitet, um solche für nur wenige tausendstel Sekunden ausgebildete Faltungsintermediate zuverlässig nachzuweisen, zu untersuchen und so komplexe Faltungswege im Detail verfolgen zu können.

Die Wissenschaftler konnten nun erkennen, welche Kräfte das Intermediat stabilisieren und warum es zum Verklumpen neigt. "Mit der NMR-Spektroskopie steht mittlerweile eine hochauflösende Methode zur Verfügung, mit der sich das Anfangsstadium der Amyloid-Bildung biophysikalisch untersuchen und - nicht zuletzt in Hinblick auf Diagnose und Therapie - verstehen lässt", zieht Neudecker Bilanz. Mit dieser biophysikalischen Technologie lassen sich nicht nur Ausgangs- und Endpunkt schneller biologischer Prozesse isoliert strukturbiologisch untersuchen und daraus indirekt Rückschlüsse auf den Mechanismus ziehen: "Wir haben jetzt auch die Möglichkeit, den Ablauf des gesamten Prozesses mit hoher räumlicher und zeitlicher Auflösung zu verfolgen und so verstehen zu lernen. Die ausgezeichnete apparative Ausstattung des Biomolekularen NMR-Zentrums von Jülich und der Universität Düsseldorf ist dazu hervorragend geeignet."

Originalpublikation:
P. Neudecker, P. Robustelli, A. Cavalli, P. Walsh, P. Lundström, A.
Zarrine-Afsar, S. Sharpe, M. Vendruscolo & L. E. Kay: Structure of an Intermediate State in Protein Folding and Aggregation, Science 336, DOI

10.1126/science.1214203

Weitere Informationen:
Institute of Complex Systems - Strukturbiochemie (ICS-6):
http://www.fz-juelich.de/ics/ics-6/DE/Home/home_node.html
Ansprechpartner:
Dr. Philipp Neudecker
Tel.: 02461 61- 9510
p.neudecker@fz-juelich.de
Pressekontakt:
Erhard Zeiss, Tel.: 02461 61-1841, e.zeiss@fz-juelich.de Dr. Arne Claussen, Tel.: 0211 81-10896, claussen@zuv.hhu.de

Erhard Zeiss | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen
16.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

nachricht Leuchtende Echsen - Knochenbasierte Fluoreszenz bei Chamäleons
15.01.2018 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal mit neuem Onlineauftritt - Lösungskompetenz für alle IT-Szenarien

16.01.2018 | Unternehmensmeldung

Die „dunkle“ Seite der Spin-Physik

16.01.2018 | Physik Astronomie

Wetteranomalien verstärken Meereisschwund

16.01.2018 | Geowissenschaften