Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Treue Partner seit der Kreidezeit

15.04.2014

Symbiose zwischen Bienenwölfen und ihren Bakterien besteht seit Millionen von Jahren. Wissenschaftler des Max-Planck-Instituts für chemische Ökologie in Jena und der Universität Regensburg haben jetzt zusammen mit US-amerikanischen Forschern entdeckt, dass bestimmte Grabwespen die Weitergabe ihrer Symbiosebakterien von der Mutter an den Nachwuchs streng kontrollieren und keine anderen Mikroorganismen übertragen. Diese Kontrolle stabilisiert das symbiotische Schutzbündnis zwischen den ungleichen Partnern und ermöglichte das Überdauern der Lebensgemeinschaft bereits seit 68-110 Millionen Jahren.

Wie wir Menschen brauchen die meisten Tiere Mikroorganismen für ihr Überleben. Solche Symbiosen bestehen zum Teil bereits seit Millionen von Jahren. Welche Faktoren die Stabilität der Beziehung zu einem bestimmten Symbiosepartner aufrechterhalten, ist jedoch in den meisten Fällen unbekannt.


Ein männlicher Bienenwolf (Philanthus pulcherrimus) in seinem Territorium. Drei Gattungen dieser Grabwesepen leben mit Antibiotika-produzierenden Streptomyces-Bakterien zusammen.

Martin Kaltenpoth / Max-Planck-Institut für chemische Ökologie


Symbiotische Streptomyces-Bakterien aus den Antennen eines weiblichen Bienenwolfes (Philanthus triangulum) (in Falschfarben).

Martin Kaltenpoth / Max-Planck-Institut für chemische Ökologie

Wissenschaftler des Max-Planck-Instituts für chemische Ökologie in Jena und der Universität Regensburg haben jetzt zusammen mit US-amerikanischen Forschern entdeckt, dass bestimmte Grabwespen die Weitergabe ihrer Symbiosebakterien von der Mutter an den Nachwuchs streng kontrollieren und keine anderen Mikroorganismen übertragen.

Diese Kontrolle stabilisiert das symbiotische Schutzbündnis zwischen den ungleichen Partnern und ermöglichte das Überdauern der Lebensgemeinschaft bereits seit 68-110 Millionen Jahren. (Proceedings of the National Academy of Sciences of the USA, April 2014, DOI: 10.1073/pnas.1400457111)

Symbiotische Beziehungen sind in der Natur allgegenwärtig und spielen eine entscheidende Rolle für die Ökologie und Evolution der allermeisten Organismen auf der Erde. Ein Beispiel für solche Lebensgemeinschaften, von denen beide Partner profitieren, sind Mykorrhizapilze, die mit etwa 90 Prozent aller Landpflanzen vergesellschaftet und für die Nährstoffversorgung der Pflanzen außerordentlich wichtig sind.

Viele dieser aus einem Wirt und einem ganz bestimmten Symbionten bestehenden Lebensgemeinschaften gibt es bereits seit Hunderten Millionen von Jahren. Wie aber können solch feste Partnerschaften bestehen? Schließlich verbringen viele Symbionten einen Teil ihres Lebenszyklus außerhalb des Körpers ihres Wirtes. Um nicht andere, in der Umwelt allgegenwärtige Bakterien aufzunehmen, müssen die Wirte zwischen Freund und Feind unterscheiden.

In einer besonders faszinierenden Verteidigungssymbiose lebt der Europäische Bienenwolf (Philanthus triangulum), eine heimische Grabwespenart, die Honigbienen jagt und diese als Nahrung für ihren Nachwuchs in Erdhöhlen einlagert. Bisherige Forschungsarbeiten haben gezeigt, dass in den Antennen der Wespe und auf dem Kokon der Larve Bakterien der Gattung Streptomyces leben.

Sie produzieren einen Cocktail aus neun verschiedenen Antibiotika und halten damit schädliche Pilze und andere Erreger von der sich entwickelnden Larve im Kokon fern, eine Strategie, die vergleichbar mit der in der Humanmedizin angewandten Kombinationsprophylaxe ist (siehe Pressemeldung vom 23. Februar 2010 „Bienenwolf schützt sich mit Antibiotika - Grabwespen-Larven nutzen Bakterien gegen Infektionen": http://www.ice.mpg.de/ext/fileadmin/extranet/common/documents/press_releases/Pressem_Kroiss2010_de.pdf).

Die Wissenschaftler erstellten nun einen Stammbaum der verschiedenen Bienenwolf-Arten und ihrer Symbiosepartner. Die Analyse des Bienenwolf-Stammbaums ergab, dass die Symbiose mit den Streptomyces-Bakterien ihren Ursprung bereits in der späten Kreidezeit hatte, genauer gesagt vor 68 bis 110 Millionen Jahren. Etwa 170 Wespenarten leben heute in Symbiose mit diesen Bakterien. Ein Vergleich der Wespen- und Bakterien-Stammbäume lieferte ein weiteres überraschendes Ergebnis:

Die Symbionten aller Bienenwolfarten sind sehr nahe miteinander verwandt, ihre stammesgeschichtliche Entwicklung verlief jedoch nicht parallel zu der ihrer Wirte, was bei einer perfekten Übertragung der Symbionten auf die Nachkommen aber zu erwarten wäre. „Dieses Muster weist darauf hin, dass Bienenwölfe gelegentlich ihre Bakterien durch andere ersetzen, allerdings immer nur durch Symbionten einer anderen Bienenwolfart“, erläutert Martin Kaltenpoth, Leiter der Max-Planck-Forschungsgruppe Insektensymbiose. „Obwohl auch freilebende, mit den Symbionten nahe verwandte Bakterien im Lebensraum von Bienenwölfen häufig anzutreffen sind, können diese die Symbionten offenbar nicht dauerhaft verdrängen.“

Wie aber können Bienenwölfe die Beziehung zu ihren speziellen Lebenspartnern langfristig aufrechterhalten? Um das herauszufinden entfernten die Forscher mit einem speziellen Verfahren die Symbionten aus einigen Bienenwölfen und infizierten sie anschließend entweder mit ihrem natürlichen Symbionten oder mit einem freilebenden Bakterium. Während sich beide Mikroorganismen in der Wespenantenne vermehrten, wurde nur der natürliche Symbiont erfolgreich an den Nachwuchs weitergegeben.

„Die Weitergabe anderer – möglicherweise schädlicher – Mikroorganismen zu verhindern könnte wichtig sein, um den Larvenkokon vor Infektionen zu schützen. So können Bienenwölfe sicherstellen, dass ihre Nachkommen den richtigen Partner zu ihrer Verteidigung bekommen“, fasst Erhard Strohm von der Universität Regensburg zusammen. Die Strategie der Bienenwölfe zur Übertragung der passenden Symbionten bietet einen aufschlussreichen Einblick in eine Symbiose, die über Jahrmillionen stabil geblieben ist, und liefert einen Beitrag zum Verständnis der Fülle und Beständigkeit symbiotischer Lebensgemeinschaften bei Insekten. In Zukunft wollen die Forscher untersuchen, wie Bienenwölfe die Übertragung anderer Bakterien an ihren Nachwuchs selektiv blockieren können. [MK/AO]

Originalveröffentlichung:
Kaltenpoth, M., Roeser-Müller, K., Köhler, S., Peterson, A., Nechitaylo, T.Y., Stubblefield, J.W., Herzner, G., Seger, J., Strohm, E. (2014). Partner choice and fidelity stabilize coevolution in a Cretaceous-age defensive symbiosis. Proceedings of the National Academy of Sciences of the USA, April 2014, DOI: 10.1073/pnas.1400457111
http://dx.doi.org/10.1073/pnas.1400457111


Weitere Informationen:
Dr. Martin Kaltenpoth, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07745 Jena, +49 3641/57-1800, mkaltenpoth@ice.mpg.de

Kontakt und Bildanfragen
Angela Overmeyer M.A., Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07745 Jena, +49 3641 57-2110, overmeyer@ice.mpg.de

Download von hochaufgelösten Fotos über http://www.ice.mpg.de/ext/735.html

Weitere Informationen:

http://www.ice.mpg.de/ext/1085.html?&L=1

Angela Overmeyer | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie