Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Trennverfahren für Proteine: Künstliche Membran eröffnet neue Perspektiven der Biotechnologie

26.03.2015

Wissenschaftler der Universität Hohenheim entwickeln künstliches Membransystem / Anwendung beispielsweise in der Medikamentenproduktion

Die Natur ist schon lange in der Lage Proteine zu trennen. Mit einem neuen biotechnologischen Verfahren soll dies künftig auch künstlich möglich sein. Daran arbeiten derzeit Wissenschaftler der Universität Hohenheim um Prof. Dr.-Ing. Rudolf Hausmann, Leiter des Fachgebiets Bioverfahrenstechnik.

Das Bundesministerium für Bildung und Forschung unterstützt das Vorhaben mit über 323.000 Euro. Damit gehört es zu den Schwergewichten der Forschung an der Universität Hohenheim.

Proteine sind Grundbausteine unseres Lebens und besitzen eine Schlüsselstellung für viele biologische und technische Prozesse. Sie werden auch in der Medizin zunehmend als Medikamente eingesetzt. Damit wird es immer wichtiger verschiedene Proteine sauber voneinander zu trennen um sie verwenden zu können.

Mögliche Anwendung

„Die sogenannte selektive Trenntechnik ist ein zentrales Problem der Verfahrenstechnik“, erklärt Prof. Dr.-Ing. Hausmann. Wenn das Verfahren einmal an der Universität Hohenheim entwickelt ist, seien die Anwendungsmöglichkeiten in der Praxis beliebig groß. Unter anderem könne man das Verfahren in der Produktion von medizinischen Proteinen verwenden.

Daher fördert das BMBF die Entwicklung nächster Generationen biotechnologischer Verfahren, die ausdrücklich die Grundlagen schaffen sollen für eine zukünftige industrielle Biotechnologie. Ziel ist eine Methode zu entwickeln, die die Herstellung neuer Bioprodukte ermöglicht.

Natur als Vorbild

Vorbild für das Forschungsprojekt ist der sogenannte Golgi-Apparat in lebenden Zellen. In ihm werden Proteine in aufeinanderfolgenden Abteilungen, getrennt durch Membranen, modifiziert.

Mal wird ein Zucker- oder Fettsäurerest angehängt, mal das Protein phosphoryliert, damit sie in der Zelle ihren Platz und ihre Aufgabe finden. Genau das will Prof. Dr.-Ing. Hausmann gemeinsam mit der Doktorandin Dipl.-Biol. Ramona Bosch schaffen: Proteine, die sich biochemisch kaum voneinander unterscheiden, mit diesem Verfahren zu trennen.

„Unser Ansatz besteht aus drei Stufen“, erklärt die Doktorandin Ramona Bosch: „Wir produzieren künstliche Proteine, diese werden mit Lipiden zu einheitlich künstlichen Membrandisketten – sogenannten Nanodisks – zusammengebaut. Die Nanodiscs werden anschließend zu Membranen zusammengefasst.“

Einfach ausgedrückt soll das Trennverfahren folgendermaßen funktionieren, wie Dipl.-Biol. Bosch erklärt: Man stelle sich einen Bioreaktor vor, der durch mehrere dieser Membranen in Abteilungen unterteilt ist. Gibt man nun ein Proteingemisch in die erste Abteilung, so können nur bestimmt Proteine, die eine Art biochemischen Passierschein haben durch die erste Membran in die nächste Abteilung.

Die zweite Membran können wiederum nur gewisse Proteine passieren, die für diese Membran den passenden Schein haben. So funktionieren alle Membranen der Reihe nach. Hat ein Protein nur einen Passierschein, kann es nur durch die erste Membran. Hat es allerdings mehrere, so kann es auch mehrere Membranen passieren. Auf diese Weise wird das Proteingemisch präzise getrennt.

Hintergrund: Forschungsprojekt

Der vollständige Name des Forschungsprojekts lautet „Selektive Kompartiment-Membranen: Neue Bausteine zur Konstruktion kontinuierlicher Reaktoren für die zellfreie Proteinbiosynthese mit angrenzendem in vitro Golgi-Apparat zur (bio)katalytischen Proteinmodifikation“. Das Bundesministerium für Bildung und Forschung fördert das Projekt drei Jahre lang mit über 323.000 Euro. Projektpartner sind Prof. Dr. Matthias Franzreb (Karlsruher Institut für Technologie), Prof. Dr. Kay-E. Gottschalk, Dr. Frank Rosenau, Prof. Dr. Tanja Weil und PD Dr. Ulrich Ziener (alle Universität Ulm) sowie Dr. Martin Siemann (Universität Stuttgart).

Hintergrund: Schwergewichte der Forschung

Rund 32,8 Millionen Euro an Drittmitteln akquirierten Wissenschaftler der Universität Hohenheim im Jahr 2013 für Forschung und Lehre. In loser Folge präsentiert die Reihe „Schwergewichte der Forschung“ herausragende Forschungsprojekte mit einem Drittmittelvolumen von mindestens 250.000 Euro bei den Experimental- bzw. 125.000 Euro bei den Buchwissenschaften.

Kontakt für Medien:
Prof. Dr.-Ing. Rudolf Hausmann, Universität Hohenheim, Fachgebiet Bioverfahrenstechnik,
Tel.: 0711/459 24720, E-Mail: Rudolf.Hausmann@uni-hohenheim.de

Dipl.-Biol. Ramona Bosch, Universität Hohenheim, Fachgebiet Bioverfahrenstechnik,
Tel.: 0711/459-24724, E-Mail: r.bosch@uni-hohenheim.de

Text: A. Schmid

Florian Klebs | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-hohenheim.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der erste Blick auf ein einzelnes Protein
18.01.2017 | Max-Planck-Institut für Festkörperforschung, Stuttgart

nachricht Unterschiedliche Rekombinationsraten halten besonders egoistische Gene im Zaum
18.01.2017 | Max-Planck-Institut für Evolutionsbiologie, Plön

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

ALMA beginnt Beobachtung der Sonne

18.01.2017 | Physik Astronomie

Textiler Hochwasserschutz erhöht Sicherheit

18.01.2017 | Architektur Bauwesen

Neues Forschungsspecial zu Meeren, Ozeanen und Gewässern

18.01.2017 | Geowissenschaften