Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Trennverfahren für Proteine: Künstliche Membran eröffnet neue Perspektiven der Biotechnologie

26.03.2015

Wissenschaftler der Universität Hohenheim entwickeln künstliches Membransystem / Anwendung beispielsweise in der Medikamentenproduktion

Die Natur ist schon lange in der Lage Proteine zu trennen. Mit einem neuen biotechnologischen Verfahren soll dies künftig auch künstlich möglich sein. Daran arbeiten derzeit Wissenschaftler der Universität Hohenheim um Prof. Dr.-Ing. Rudolf Hausmann, Leiter des Fachgebiets Bioverfahrenstechnik.

Das Bundesministerium für Bildung und Forschung unterstützt das Vorhaben mit über 323.000 Euro. Damit gehört es zu den Schwergewichten der Forschung an der Universität Hohenheim.

Proteine sind Grundbausteine unseres Lebens und besitzen eine Schlüsselstellung für viele biologische und technische Prozesse. Sie werden auch in der Medizin zunehmend als Medikamente eingesetzt. Damit wird es immer wichtiger verschiedene Proteine sauber voneinander zu trennen um sie verwenden zu können.

Mögliche Anwendung

„Die sogenannte selektive Trenntechnik ist ein zentrales Problem der Verfahrenstechnik“, erklärt Prof. Dr.-Ing. Hausmann. Wenn das Verfahren einmal an der Universität Hohenheim entwickelt ist, seien die Anwendungsmöglichkeiten in der Praxis beliebig groß. Unter anderem könne man das Verfahren in der Produktion von medizinischen Proteinen verwenden.

Daher fördert das BMBF die Entwicklung nächster Generationen biotechnologischer Verfahren, die ausdrücklich die Grundlagen schaffen sollen für eine zukünftige industrielle Biotechnologie. Ziel ist eine Methode zu entwickeln, die die Herstellung neuer Bioprodukte ermöglicht.

Natur als Vorbild

Vorbild für das Forschungsprojekt ist der sogenannte Golgi-Apparat in lebenden Zellen. In ihm werden Proteine in aufeinanderfolgenden Abteilungen, getrennt durch Membranen, modifiziert.

Mal wird ein Zucker- oder Fettsäurerest angehängt, mal das Protein phosphoryliert, damit sie in der Zelle ihren Platz und ihre Aufgabe finden. Genau das will Prof. Dr.-Ing. Hausmann gemeinsam mit der Doktorandin Dipl.-Biol. Ramona Bosch schaffen: Proteine, die sich biochemisch kaum voneinander unterscheiden, mit diesem Verfahren zu trennen.

„Unser Ansatz besteht aus drei Stufen“, erklärt die Doktorandin Ramona Bosch: „Wir produzieren künstliche Proteine, diese werden mit Lipiden zu einheitlich künstlichen Membrandisketten – sogenannten Nanodisks – zusammengebaut. Die Nanodiscs werden anschließend zu Membranen zusammengefasst.“

Einfach ausgedrückt soll das Trennverfahren folgendermaßen funktionieren, wie Dipl.-Biol. Bosch erklärt: Man stelle sich einen Bioreaktor vor, der durch mehrere dieser Membranen in Abteilungen unterteilt ist. Gibt man nun ein Proteingemisch in die erste Abteilung, so können nur bestimmt Proteine, die eine Art biochemischen Passierschein haben durch die erste Membran in die nächste Abteilung.

Die zweite Membran können wiederum nur gewisse Proteine passieren, die für diese Membran den passenden Schein haben. So funktionieren alle Membranen der Reihe nach. Hat ein Protein nur einen Passierschein, kann es nur durch die erste Membran. Hat es allerdings mehrere, so kann es auch mehrere Membranen passieren. Auf diese Weise wird das Proteingemisch präzise getrennt.

Hintergrund: Forschungsprojekt

Der vollständige Name des Forschungsprojekts lautet „Selektive Kompartiment-Membranen: Neue Bausteine zur Konstruktion kontinuierlicher Reaktoren für die zellfreie Proteinbiosynthese mit angrenzendem in vitro Golgi-Apparat zur (bio)katalytischen Proteinmodifikation“. Das Bundesministerium für Bildung und Forschung fördert das Projekt drei Jahre lang mit über 323.000 Euro. Projektpartner sind Prof. Dr. Matthias Franzreb (Karlsruher Institut für Technologie), Prof. Dr. Kay-E. Gottschalk, Dr. Frank Rosenau, Prof. Dr. Tanja Weil und PD Dr. Ulrich Ziener (alle Universität Ulm) sowie Dr. Martin Siemann (Universität Stuttgart).

Hintergrund: Schwergewichte der Forschung

Rund 32,8 Millionen Euro an Drittmitteln akquirierten Wissenschaftler der Universität Hohenheim im Jahr 2013 für Forschung und Lehre. In loser Folge präsentiert die Reihe „Schwergewichte der Forschung“ herausragende Forschungsprojekte mit einem Drittmittelvolumen von mindestens 250.000 Euro bei den Experimental- bzw. 125.000 Euro bei den Buchwissenschaften.

Kontakt für Medien:
Prof. Dr.-Ing. Rudolf Hausmann, Universität Hohenheim, Fachgebiet Bioverfahrenstechnik,
Tel.: 0711/459 24720, E-Mail: Rudolf.Hausmann@uni-hohenheim.de

Dipl.-Biol. Ramona Bosch, Universität Hohenheim, Fachgebiet Bioverfahrenstechnik,
Tel.: 0711/459-24724, E-Mail: r.bosch@uni-hohenheim.de

Text: A. Schmid

Florian Klebs | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-hohenheim.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Treibjagd in der Petrischale
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Dinner in the Dark – ein delikates Wechselspiel der Mikroorganismen
24.11.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metamaterial mit Dreheffekt

Mit 3D-Druckern für den Mikrobereich ist es Forschern des Karlsruher Instituts für Technologie (KIT) gelungen ein Metamaterial aus würfelförmigen Bausteinen zu schaffen, das auf Druckkräfte mit einer Rotation antwortet. Üblicherweise gelingt dies nur mit Hilfe einer Übersetzung wie zum Beispiel einer Kurbelwelle. Das ausgeklügelte Design aus Streben und Ringstrukturen, sowie die zu Grunde liegende Mathematik stellen die Wissenschaftler in der aktuellen Ausgabe der renommierten Fachzeitschrift Science vor.

„Übt man Kraft von oben auf einen Materialblock aus, dann deformiert sich dieser in unterschiedlicher Weise. Er kann sich ausbuchten, zusammenstauchen oder...

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsschwerpunkt „Smarte Systeme für Mensch und Maschine“ gegründet

24.11.2017 | Veranstaltungen

Schonender Hüftgelenkersatz bei jungen Patienten - Schlüssellochchirurgie und weniger Abrieb

24.11.2017 | Veranstaltungen

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungsnachrichten

Maschinen über die eigene Handfläche steuern: Nachwuchspreis für Medieninformatik-Student

24.11.2017 | Förderungen Preise

Treibjagd in der Petrischale

24.11.2017 | Biowissenschaften Chemie